
Developer Guide for Java
Inxmail Professional API 1.20.6

Contact address

Phone: +49 761 296979-0
Email: info@inxmail.de

Find out more about Inxmail GmbH and the email marketing solution
Inxmail Professional at www.inxmail.com

Dep
rec

ate
d

This document describes how to install use the Inxmail API. This is a technical paper. Knowledge
of the chosen operating system and of programming in the Java, PHP or .NET1 is required.

1Java is a registered trademark of Oracle Inc.
.NET is a registered trademark of Microsoft Inc.

Dep
rec

ate
d

Contents

1. Change History 7
1.1. Inxmail API 1.20.6 . 7
1.2. Inxmail API 1.20.4 . 7
1.3. Inxmail API 1.20.3 . 7
1.4. Inxmail API 1.20.2 . 7
1.5. Inxmail API 1.20.1 . 8
1.6. Inxmail API 1.20.0 . 8
1.7. Inxmail API 1.19.2 . 8
1.8. Inxmail API 1.19.1 . 8
1.9. Inxmail API 1.19.0 . 8
1.10. Inxmail API 1.18.0 . 9
1.11. Inxmail API 1.17.0 . 9
1.12. Inxmail API 1.16.0 . 9
1.13. Inxmail API 1.15.0 . 10
1.14. Inxmail API 1.14.5 . 10
1.15. Inxmail API 1.13.3 . 11
1.16. Inxmail API 1.13.2 . 11
1.17. Inxmail API 1.13.1 . 11
1.18. Inxmail API 1.12.1 . 12
1.19. Inxmail API 1.11.10 . 12
1.20. Inxmail API 1.11.5 . 13
1.21. Inxmail API 1.11.4 (Beta version) . 13
1.22. Inxmail API 1.10.1 . 15
1.23. Inxmail API 1.10.0 . 15
1.24. Inxmail API 1.9.0 . 17
1.25. Inxmail API 1.8.0 . 18
1.26. Inxmail API 1.7.2 . 19
1.27. Inxmail API 1.7.1 . 19
1.28. Inxmail API 1.7.0 . 19
1.29. Inxmail API 1.6.2 . 19
1.30. Inxmail API 1.6.1 . 19
1.31. Inxmail API 1.6.0 . 20
1.32. Inxmail API 1.5.0 . 20
1.33. Inxmail API 1.4.4 . 21
1.34. Inxmail API 1.4.3 . 22
1.35. Inxmail API 1.4.2 . 22
1.36. Inxmail API 1.4.1 . 22
1.37. Inxmail API 1.4.0 . 23
1.38. Inxmail API 1.2.0 . 23

2. Introduction 24
2.1. Security Issues . 24
2.2. System Requirements . 24
2.3. Inxmail API for Java . 24

2.3.1. Running the Samples . 25
2.3.2. Code Snippets . 25

Developer Guide | www.inxmail.com 3

Dep
rec

ate
d

Contents

3. API Description 26
3.1. Sessions . 26

3.1.1. Login and Logout . 26
Anonymous Local Sessions . 26
Remote Named Sessions . 26

3.1.2. Using Proxy Servers . 27
3.2. Using the Hessian Protocol . 28
3.3. Getting the Inxmail Professional Server time . 28
3.4. Sending temporary Mails . 28
3.5. BusinessObjects and BOResultSets . 29
3.6. ListContext Management . 31

3.6.1. Creating, Searching and Naming Lists . 31
3.6.2. Size of Lists . 32
3.6.3. List properties . 32

3.7. Synchronizing tracking permissions . 32
3.7.1. RecipientRowSet . 33
3.7.2. BatchChannel . 33
3.7.3. SubscriptionManager . 33
3.7.4. TrackingPermissionManager . 33

3.8. RecipientContext . 34
3.8.1. Adding New Recipients . 35
3.8.2. BatchChannel . 35
3.8.3. Searching Recipients . 36
3.8.4. Controlling List Membership . 37
3.8.5. Deleting Recipients . 37
3.8.6. Updating Recipients . 38
3.8.7. Using alternative key instead of email address 38
3.8.8. Unsubscribed recipients . 38
3.8.9. Personal Tracking . 39

3.9. AttributeManager . 40
3.10. ApproverManager . 40
3.11. Features . 41

3.11.1. SubscriptionManager . 41
3.11.2. MailingManager . 42

Create and Edit Mailings . 42
Retrieval of Mailings . 43
Approval and Controlling Send-Out . 44
Mail Preview . 44
Sending info . 44

3.11.3. TriggerMailingManager . 45
Creation and editing . 45
Retrieval . 48
Approval and controlling send-out . 50
Mail preview . 50
Sending info . 51

3.11.4. GeneralMailingManager . 51
Retrieval of GeneralMailings . 51
The GeneralMailing BusinessObject 53
Rendering & Preview . 53

3.11.5. SplitTestManager and SplitTestMailingManager 55
Retrieval of SplitTests and SplitTestMailings 55

3.11.6. DesignCollectionManager . 56
3.11.7. MailingTemplateManager . 57
3.11.8. TextmoduleManager . 58
3.11.9. TransformationManager . 58

Developer Guide | www.inxmail.com 4

Dep
rec

ate
d

Contents

Retrieval of transformations . 58
Creating transformations . 58
Editing transformations . 58

3.11.10. DataAccess . 59
LinkData . 59
Fluent interface for links . 60
ClickData . 61
Fluent interface for clicks . 61

3.11.11. SendingHistoryManager . 63
Performance Considerations . 67

3.11.12. ActionManager . 69
Creating an Action . 70

3.11.13. BlacklistManager . 71
Adding new Rules . 71
Searching entries . 72

3.11.14. Managing Resources . 72
3.11.15. BounceManager . 72
3.11.16. InboxManager . 74
3.11.17. Test profiles . 75
3.11.18. WebpageManager . 75
3.11.19. Retrieving Reports . 76
3.11.20. TrackingPermissionManager . 77

Retrieval of TrackingPermissions . 77
Grant and revoke TrackingPermissions 79

3.11.21. Tracking permission log . 79

A. Reports Reference 82
A.1. Catalogues . 82
A.2. Bounce Reports . 82

A.2.1. Broken down by (top-level) domain . 82
A.2.2. Development over time . 83
A.2.3. Bounces and replies by Domain . 84
A.2.4. Broken down by top 5 domains over time 84
A.2.5. Broken down by top-level domains over time 85

A.3. Mailing Reports . 85
A.3.1. Clicks related to weekday and hour . 85
A.3.2. Clicks related to individual links . 86
A.3.3. Click development over time . 86
A.3.4. Most important key data of mailing . 86
A.3.5. Sendings overview . 86
A.3.6. Split test analysis . 87
A.3.7. E-mail clients used . 87

A.4. Recipient Demographics . 87
A.4.1. Analysis of recipient data . 87
A.4.2. Domain distribution . 87
A.4.3. Top-level domain distribution . 88

A.5. List Reports . 88
A.5.1. Most important key data of a list . 88
A.5.2. Send overview . 88
A.5.3. Mailings overview . 88
A.5.4. Analysis of transport frequency . 89
A.5.5. Evolution over time . 89
A.5.6. Related to weekday and daytime . 89
A.5.7. Comparison of mailings in current list . 89
A.5.8. Target group comparison of current mailing 90

Developer Guide | www.inxmail.com 5

Dep
rec

ate
d

Contents

A.5.9. E-mail clients used . 90
A.6. Administrative Reports . 90

A.6.1. Mail server . 90
A.6.2. Analysis of sending mail server (SMTP)/(POP3) 91

A.7. General Reports . 91
A.7.1. Overview of the most important key data of all lists 91
A.7.2. E-mail volume . 91
A.7.3. E-mail clients used . 91

B. Support and Copyright 92

Developer Guide | www.inxmail.com 6

Dep
rec

ate
d

1. Change History

Version 1.0.0 of the Inxmail API was introduced June 2005 with Inxmail Professional 3.2. Since then
it has undergone some changes, most of them introducing new features to make more functionality
of Inxmail available through the API.

1.1. Inxmail API 1.20.6

Changes in API 1.20.6, since Inxmail Professional 4.8.18

• Bugfix: Deserialization of TDateTime objects fixed - .NET
When fetching a date time object from the server using the Hessian protocol, where the date
is close to the year 0, a deserialization error could occur. This is fixed in the included Hessian
library version 1.3.14.

• Bugfix: Serialization of TString objects fixed - .NET
When writing a TString value using the Hessian protocol, where the written characters have 4
bytes, the serialization resulted in an error. This is fixed in the included Hessian library version
1.3.14.

1.2. Inxmail API 1.20.4

Changes in API 1.20.4, since Inxmail Professional 4.8.0

• New: Support for UTF-8 - .NET, PHP, Java

API 1.20.4 includes support for UTF-8. This concerns the SOAP interface for Java, PHP and
.NET. The Java API fully supports unicode with SOAP and Hessian. The .NET API fully supports
UTF-8 for read access. Using .NET/Hessian write access with UTF-8 is limited. Four byte
characters cannot be used here.

1.3. Inxmail API 1.20.3

Changes in API 1.20.3, since Inxmail Professional 4.8.0

• New: Changed layout for Inxmail API documentation

1.4. Inxmail API 1.20.2

Changes in API 1.20.2, since Inxmail Professional 4.8.0

• Note: Recommendation to convert all DateTime objects to universal time - .NET
We strongly recommend calling ToUniversalTime() on all DateTime objects, including those
wrapped in TDatetime, TDate and TTime objects.

Developer Guide | www.inxmail.com 7

Dep
rec

ate
d

1. Change History

1.5. Inxmail API 1.20.1

Changes in API 1.20.1, since Inxmail Professional 4.8.0

• Note: System Requirements updated with the supported Java version for using the Inx-
mail API - Java
When using the Inxmail API for Java only Java 8 or newer is supported.

• New: OriginatorType SUBSCRIPTION_JSP - .NET, PHP, Java
There’s a new OriginatorType called SUBSCRIPTION_JSP, which tells you that the tracking per-
mission originated from a JSP.

1.6. Inxmail API 1.20.0

Changes in API 1.20.0, since Inxmail Professional 4.7.2

• New: TrackingPermissionLogEntryRowSet includes reicpient data - .NET, PHP, Java
The TrackingPermisisonLogEntryRowSet can now be created to give access to recipient data.
In order to do so, specify a RecipientContext and the relevant Attributes when creating the
TrackingPermissionLogQuery.

1.7. Inxmail API 1.19.2

Changes in API 1.19.2, since Inxmail Professional 4.7.0

• New: TrackingPermissionDetachedFromMembership property available - .NET, PHP, Java
The TrackingPermissionDetachedFromMembership list property can now be read and written
using this API. When activated, a recipient’s tracking permission will not be revoked when she
is removed from the list. It is also possible to change the tracking permission for recipients not
subscribed to that list. Be aware, though, that unsubscribing a recipient from the list, rather than
removing, will still revoke that recipient’s tracking permission.

• Note: Access checks in TrackingPermissionQuery and TrackingPermissionLogQuery
changed - .NET, PHP, Java
With Inxmail Professional 4.7.1, the access checks performed by TrackingPermissionQuery

and TrackingPermissionLogQuery have changed. For details on this topic, take a look at the
javadoc for these classes.

1.8. Inxmail API 1.19.1

Changes in API 1.19.1, since Inxmail Professional 4.7.0

• Bugfix: TrackingPermissionLogQuery is not working when using the Hessian protocol -
.NET
Version 1.19.0 of the .NET version of this API introduced a bug in the TrackingPermissionLog-

Query when using the Hessian protocol. This issue has been resolved.

1.9. Inxmail API 1.19.0

Changes in API 1.19.0, since Inxmail Professional 4.7.0

Developer Guide | www.inxmail.com 8

Dep
rec

ate
d

1. Change History

• Bugfix: Serialization and deserialization of TLong objects incorrect - Java, .NET
API version 1.18.0 introduced a bug in the serialization and deserialization of TLong objects
which affected previous versions when using the Hessian protocol. This issue has been re-
solved.

• Known Issue: TrackingPermissionLogQuery is not working when using the Hessian pro-
tocol - .NET
Please note, that the TrackingPermissionLogQuery introduced in Inxmail Professional API
1.18.0 is currently not working in the .NET version of this API when using the Hessian protocol.
This issue will be resolved in an upcoming release.

1.10. Inxmail API 1.18.0

Changes in API 1.18.0, since Inxmail Professional 4.7.0

• New: Tracking Permission Log can be fetched. - .NET, PHP, Java
The TrackingPermissionManager can be used to fetch the tracking permission log. With the log
all changes to the tracking permission state can be fetched and synchronized.

1.11. Inxmail API 1.17.0

Changes in API 1.17.0, since Inxmail Professional 4.7.0

• New: TrackingPermissionManager - .NET, PHP, Java
The TrackingPermissionManager can be used for retrieving, granting or revoking tracking per-
missions.

1.12. Inxmail API 1.16.0

Changes in API 1.16.0, since Inxmail Professional 4.7.0

• New: Tracking permission attributes can be fetched - .NET, PHP, Java
The createRecipientContext(boolean) method of class Session allows the creation of a Recipi-
entContext which includes tracking permission attributes. This enables the use of the following
methods for synchronizing tracking permissions:

• RecipientMetaData.getTrackingPermissionAttribute(ListContext)

• RecipientRowSet.getTrackingPermission(ListContext)

• RecipientRowSet.updateTrackingPermission(ListContext, TrackingPermissionState)

• BatchChannel.writeTrackingPermission(ListContext, TrackingPermissionState)

Please note that using this feature is discouraged when using the PHP version of this API due
to considerably decreased performance.

• New: Actions added dealing with granting and revoking the tracking permission - .NET,
PHP, Java
The methods createGrantTrackingPermissionCmd(int listContextId) and createRevokeTracking-
PermissionCmd(int listContextId) of the CommandFactory interface will grant/ revoke the track-
ing permission of/ from a given list.

Developer Guide | www.inxmail.com 9

Dep
rec

ate
d

1. Change History

• New: Action added dealing with transferring the tracking permission from a source list
to a target list - .NET, PHP, Java
The methods createTransferTrackingPermissionCmd(int targetListId) / createTransferTracking-
PermissionCmd(int targetListId, Integer sourceListId) of the CommandFactory interface will trans-
fer the tracking permission from a source list to a target list. The method with two parameters
will transfer the tracking permission from a given source list to a given target list. The method
with just one parameter will transfer the tracking permission from the source list, from which the
event has been triggered on, to the given target list.

1.13. Inxmail API 1.15.0

Changes in API 1.15.0, since Inxmail Professional 4.7.0

• New: Possibility to get the tracking hash of the recipient from the click - .NET, PHP, Java
The getTrackingHash() method in ClickDataRowSet returns the anonymized hash of the recipi-
ent identifier within the sending of the current click. If there is no tracking permission getMem-
berId() will return 0, because the recipient has not given a permission to track him.

• New: Actions are only executed when executeAlways flag is set - .NET, PHP, Java
The executeAlways flag in the action class controls, whether an action is executed even when
there is no tracking permission. If the flag is set to false, the action is executed only, if a tracking
permission of the recipient exists. If the flag is true, the action is executed always.

• New: LinkTypes for tracking permission links - .NET, PHP, Java
The new LinkTypes are available in the LinkDataRowSet interface (LINK_TYPE_GRANT_TRACKING_-
PERMISSION, LINK_TYPE_WITHDRAW_TRACKING_PERMISSION). API versions as of 1.8.0
will have automatic access to link and click data of the new tracking permission types through
the DataAccess interface, but tracking permission links will be marked with the LinkType LINK_-
TYPE_UNKNOWN.

1.14. Inxmail API 1.14.5

Changes in API 1.14.5, since Inxmail Professional 4.6.3

• New: Possibility to set the tracking permission when subscribing a recipient - .NET, PHP,
Java
The processSubscription method of the SubscriptionManager can now activate the subscription
process with a tracking permission.

• New: Possibility to read and write the tracking permission of a recipient - .NET, PHP, Java
The getTrackingPermission and updateTrackingPermission method can now read and change
the tracking permission of a recipient.

• New: Possibility to write the tracking permission of a recipient via the batch channel -
.NET, PHP, Java
The writeTrackingPermission method can now change the tracking permission of a recipient via
the batch channel.

• Bugfix: Possible Exception when transferring time only Attributes - .NET and Hessian
The .NET Hessian Library 1.3.11, packaged with .NET API 1.13.3, contains a bug which occurs
when a time only attribute is transferred from the server to the client and the value of the attribute
is null. Instead of transferring null an Exception is thrown. The .NET Hessian Library 1.3.12
contained in this API release resolves the issue.

Developer Guide | www.inxmail.com 10

Dep
rec

ate
d

1. Change History

1.15. Inxmail API 1.13.3

Changes in API 1.13.3, since Inxmail Professional 4.6.0

• Bugfix: Dates before January 1st, 1970 are processed incorrectly when using the hessian
protocol - .NET
Previous versions of the Inxmail Professional API for .NET could not handle dates before Jan-
uary 1st, 1970 (i.e. the Unix epoch) correctly. Dates before this specific date were processed
incorrectly when using the hessian protocol which produced DateTime values in the far future.
This issue has been resolved.

1.16. Inxmail API 1.13.2

Changes in API 1.13.2, since Inxmail Professional 4.6.0

• Bugfix: Retrieval of transformations without creation date triggers error - PHP
Previous versions of this API could not deal with transformations lacking a creation date which
is missing for transformations created in older versions of Inxmail Professional. This issue has
been resolved in version 1.13.2.

• Bugfix: List cannot be deleted in the presence of an import automation
Prior to Inxmail Professional version 4.6.0, a list could not be deleted in the presence of an
import automation.

• Note: Removing a test recipients attribute will result in the value being null.
If an attribute of a test recipient is set to the empty string the resulting value will be null instead
of the empty string.

• Note: New reports in Reports Reference
The new reports SystemMailingsOverview and ListMailingsOverview were added to the Reports
Reference in the appendix of the manual.

1.17. Inxmail API 1.13.1

Changes in API 1.13.1, since Inxmail Professional 4.4.2

• New: Access to split test and split test mailing objects
The new SplitTestManager and SplitTestMailingManager provide an interface which can be used
to aggregate all split test mailings that refer to the same split test. For more information, see
section SplitTestManager and SplitTestMailingManager

• New: Access to data source transformations
The new TransformationManager provides access to the data source transformations used in
the Inxmail Professional content agent. It can be used to find, create and delete transformations
as well as editing the XSLT code. For more information, see section TransformationManager.

• New: Bounce incorporates sending ID
The Bounce object now incorporates the sending ID, if available. This allows the correlation
between a bounce and a sending which is especially interesting in case of trigger mailings,
because these mailings may be sent multiple times.

• Bugfix: Creation of recipients does not work - PHP
Inxmail Professional API version 1.11.10 introduced a bug that prevented the creation of recipi-
ents.

Developer Guide | www.inxmail.com 11

Dep
rec

ate
d

1. Change History

• Bugfix: Creation of test recipients does not work - PHP
Inxmail Professional API version 1.11.10 introduced a bug that prevented the creation of test
recipients.

• Bugfix: new http option ’enableSNI’ - PHP
New option ’http.enableSNI’ solves connection problems in SSL and Proxy contexts

1.18. Inxmail API 1.12.1

Changes in API 1.12.1, since Inxmail Professional 4.4.1.223

• New: Fluent interface for link data queries
To ease the creation of complex link data queries, this version of the Inxmail Professional API
introduces a new fluent interface which can be used to create and execute such queries.

• New: Direct connection between sending history and clicks
Now the sending object allows to determine the corresponding click data and vice versa.

• New: Fluent interface for bounce queries and filter by bounce category
To ease the creation of complex bounce queries, this version of the Inxmail Professional API
introduces a new fluent interface which can be used to create and execute such queries. It also
provides the possibility to filter by bounce category.

• New: Support for spam bounces and auto responder bounces
All bounce result sets will include bounces of category spam and/or auto responder if they match
the queried filter.

• New: Subscription log includes sending id
Entries of the subscription log include the related sending id if applicable.

• Bugfix: Unique action names are enforced - All languages
As of Inxmail Professional 4.4.1, creating an action with the same name as an existing action
will cause an UpdateException to be thrown on commit. Updating an existing action to a new
name that is already in use also triggers an UpdateException.

1.19. Inxmail API 1.11.10

Changes in API 1.11.10, since Inxmail Professional 4.4.0.900

• New: Standardised access to most mailing types
The new GeneralMailingManager provides read-only access to most of the mailing types sup-
ported by Inxmail Professional through a single interface. For more information, see section
GeneralMailingManager.

• New: Restricting link retrieval to permanent links
The LinkData class now offers methods to restrict the result set to contain permanent links only.
For more information refer to section LinkData in chapter DataAccess.

Bugfix: LinkDataRowSet does not contain temporary links - All languages
The previous version of the API contained a bugfix which removed temporary links from the
LinkDataRowSet. This caused problems in some applications based on the Inxmail Professional
API. Therefore, the default behavior was switched back to including temporary links, too.

• Bugfix: NullPointerException when parsing mailings with non-existing sending ID - All
languages
In previous versions of the API, an attempt to parse a mailing with a non-existing sending ID

Developer Guide | www.inxmail.com 12

Dep
rec

ate
d

1. Change History

using one of the renderers caused a server side NullPointerException. This is no longer the
case, instead the invalid sending ID is ignored.

1.20. Inxmail API 1.11.5

Changes in API 1.11.5, since Inxmail Professional 4.4.0.820

Note: Performance improvements in SendingHistoryManager
The performance of the SendingHistoryManager was increased dramatically. For more informa-
tion on the performance characteristics of the SendingHistoryManager, see section Performance
considerations in chapter SendingHistoryManager.

Bugfix: Huge ClickDataQuery can cause server crash
In beta API version 1.11.4 it was possible to trigger a server crash by fetching a huge amount
of clicks using the fluent click interface. To prevent this issue, the maximum number of clicks
which can be retrieved in a single query has been limited. For more information on this topic,
see section Performance considerations in chapter Fluent interface for clicks.

• Bugfix: RecipientContext.findByIds no longer filters non existent recipients
The findByIds method of the RecipientContext no longer filters non existent recipients, instead
triggering a DataException when trying to access a recipient record which is not existing.

• Bugfix: RecipientRowSet.getId throws NullPointerException if recipient does not exist
In API version 1.11.5, method getId of class RecipientRowSet no longer throws a NullPoint-
erException if the current recipient does not exist, but instead throws a DataException as is
documented in the code documentation of this method.

1.21. Inxmail API 1.11.4 (Beta version)

Changes in API 1.11.4 (Beta version), since Inxmail Professional 4.4.0.705

• New: Access to sending history
The new SendingHistoryManager provides access to information regarding the sending of mail-
ings, including open/click count, recipient reactions and other sending statistics.

• New: Generics, Iterable and Closable - Java
This version of the Inxmail Professional API was completely revised to use Generics. In addi-
tion, BOResultSets and RecipientMetaData now implement Iterable for easy iteration using the
for-each loop. Furthermore, Java 7 users will probably like the possibility to use the try-with-
resources statement on any API class which provides a close method. All these refactorings
provide a much cleaner and more concise way of using the Inxmail Professional API.

• New: BOResultSets implement IEnumerable - .NET
In the new version of the Inxmail Professional API for .NET, BOResultSets implement the IEnu-
merable interface for easy iteration using the for-each loop.

• New: BOResultSets implement Iterator - PHP
As in the Java and .NET versions of the Inxmail Professional API, the PHP version implements
Iterator for easy iteration using the for-each loop.

• New: Fluent interface for click data queries To ease the creation of complex click data
queries, this version of the Inxmail Professional API introduces a new fluent interface which
can be used to create and execute such queries.

Developer Guide | www.inxmail.com 13

Dep
rec

ate
d

1. Change History

• New: Configurable batch size for clicks
To provide a better means of performance tuning you can now specify the batch size for click
data on a per-request basis. This allows you to control how many data records are transferred
with each server call.

• New: Improved access to unsubscription date
The UnsubscriptionRecipientRowSet now provides a more intuitive means of accessing the un-
subscription date using the getUnsubscriptionDate() method.

• New: Configurable timeout for server calls - Java
In some cases a server call takes so much time that it is aborted. This may be due to a slow
network connection, large amounts of data being transferred or - in a worst case scenario - a
combination of both. If you experience this problem on a regular basis, you can now specify the
read timeout on session creation.

• New: Access to the connection URL
In some special cases you may want to know the connection URL a session was created with.
This is now possible using the getConnectionUrl() method.

• Note: New reports in Reports Reference
The Reports Reference in the appendix of the manual was updated with various new reports,
including trigger mailing reports.

• Note: Increased session timeout and click data batch size
With Inxmail Professional 4.4, the default session timeout was increased from six minutes to
nine minutes. The default batch size for click data was increased from 50 to 500, which should
dramatically increase the performance of the click data retrieval.

Bugfix: Incorrect behaviour when deleting a single row - .NET
When deleting a single row in a row set or BOResultSet, the .NET version of the Inxmail Pro-
fessional API always deleted the first row in this row set or BOResultSet. If you do delete single
rows using the Inxmail Professional API for .NET, we strongly recommend updating to this ver-
sion.

• Bugfix: Personalization with test profiles is impossible - .NET
Prior to version 1.11.4 of the Inxmail Professional API it was impossible to personalize a mailing
with a test profile instead of a recipient.

• Bugfix: Retrieval of DesignCollections and Mailings - .NET
Version 1.9.0 of the Inxmail Professional API for .NET introduced a bug that prevented the
retrieval of DesignCollections and Mailings.

• Bugifx: Mailing cannot be locked using Hessian - .NET
Using the Hessian protocol, it was impossible to lock Mailings. This bug only occurred in the
.NET version of the Inxmail Professional API.

• Bugfix: Closing a session might trigger a fatal error - .NET
In some cases (bad timing), closing a session could trigger a fatal error, thus aborting program
execution. This bug also only occurred in the .NET version of the Inxmail Professional API.

• Bugfix: Possible double subscription/unsubscription - PHP
Under certain circumstances, using the processSubscription and processUnsubscription func-
tions of the SubscriptionManager caused a double subscription/unsubscription. While this did
not cause any problems in regard to the recipient’s state, registered actions might have been
triggered twice.

• Bugfix: Retrieval of old web pages causes SOAP error - All languages
Prior to Inxmail Professional API version 1.11.4, web pages which lacked either a creation date

Developer Guide | www.inxmail.com 14

Dep
rec

ate
d

1. Change History

or a sub type caused a SOAP error on retrieval, stating that these attributes may not be null.
Wep pages created with Inxmail Professional 4.1 or lower had no creation date.

• Bugfix: Exception on findByKey - All languages
Calling the findByKey(String) method of the RecipientContext caused a server-side NullPoint-
erException if the given recipient was unknown.

• Bugfix: TestRecipientRowSet always empty after deleteRow(s) - All languages
Due to a server bug, a TestRecipientRowSet was always empty after a call to deleteRow or
deleteRows.

• Bugfix: LinkDataRowSet contains temporary links - All languages
Starting with Inxmail Professional 4.4, LinkDataRowSets no longer contain temporary links, as
this is in most cases not intended.

• Bugfix: Forced unlocking impossible - All languages
Inxmail Professional 4.2 introduced a bug which prevented the unlocking of business objects
which were locked by other sessions.

• Bugfix: Invalid list ID allowed for approver - All languages
Prior to Inxmail Profession API version 1.11.4, zero was considered a valid list ID during the
creation of approvers. Because the approver was therefore list specific but not bound to any
existing list, the approver could neither be used nor recreated.

• Bugfix: Invalid values allowed for SetValueCommand - All languages
Prior to Inxmail Professional 4.4, some invalid values could be used for the SetValueCommand
which caused an invalid state.

• Bugfix: Missing/incorrect security checks - All languages
Prior to the latest version of Inxmail Professional 4.3, calling the denyApprove method of a
Mailing did not require the user right ’Approve mailing’. Setting the global visibility of an attribute,
on the ohter hand, falsly required the right to access the administration list.

1.22. Inxmail API 1.10.1

Changes in API 1.10.1, since Inxmail Professional 4.3.2

• New: Support for new "unsubscribe not in list" feature
Starting with Inxmail Professional 4.3.2 it is possible to unsubscribe recipients who are no longer
member of the list at hand (neither subscribed nor unsubscribed). This feature can be enabled
(either global or list specific) using the corresponding list property. Also, there are a couple of
new subscription log entry types related to that feature.

Note: New handling of subscription log entry types
Starting with Inxmail Professional API version 1.10.1, the subscription log entry types PENDING_-
SUBSCRIPTION_DONE, PENDING_UNSUBSCRIPTION_DONE and LIST_UNSUBSCRIBE_-
HEADER_UNSUBSCRIPTION are no longer converted to VERIFIED_SUBSCRIPTION or VERIFIED_-
UNSUBSCRIPTION respectively, but are returned as they are. Furthermore, the new NOT_IN_-
SYSTEM_UNSUBSCRIPTION type marks all unsubscription attempts of recipients who are not
registered in Inxmail Professional.

1.23. Inxmail API 1.10.0

Changes in API 1.10.0, since Inxmail Professional 4.3

Developer Guide | www.inxmail.com 15

Dep
rec

ate
d

1. Change History

• New: Trigger mailing management
The new TriggerMailingManager can be used to create, edit, approve, activate, delete and re-
trieve trigger mailings. This also includes a new command which enables actions to send action
mailings.

• New: Visibility of recipient attributes
Two new methods were added to check the visibility of recipient attributes in a list.

• New: Retrieve recipients by key
With the new findByKey(s) and findAllByKey(s) methods it is now very easy to retrieve recipients
by their key (e.g. the email address).

Info: New version of .NET framework required
With version 1.10.0 of the Inxmail Professional API, .NET Framework 4.0 is required. If you are
not already using the .NET Framework 4.0, be sure to download and install an appropriate SDK.
The client profile is not sufficient.

• Bugfix: selectAll method in FilterManager - All languages
A server bug in Inxmail Professional 4.2 caused the selectAll method in the FilterManager to
always return an empty result set.

• Bugfix: Retrieval of command data - .NET
Due to a bug it was not possible to retrieve data associated with a command (e.g. SetValueCom-
mand) in the .NET API.

• Bugfix: Retrieval of SetValueAction command type - All languages
Due to a server bug in Inxmail Professional 4.2 the command type of a SetValueAction was
returned incorrectly (CMD_TYPE_ABSOLUTE and CMD_TYPE_RELATIVE were swapped).

• Bugfix: scheduleMailing method in MailingManager - All languages
A server bug in Inxmail Professional 4.2 prevented the scheduleMailing method in the Mailing-
Manager to throw a SecurityException if the mailing is in the DRAFT state and the API user
does not have the right to bypass the approval process.

• Bugfix: unlock method in MailingManager - All languages
The unlock method in the MailingManager did always return false.

• Bugfix: Import of invalid design collections - All languages
Importing a non-ITC file as design collection returned null instead of throwing an appropriate
exception.

• Bugfix: DataException on invalid filters in FilterManager - PHP
Due to a bug in the PHP API the commitUpdate method of the Filter class threw a DataException
instead of an UpdateException.

• Bugfix: Error handling in ListManager - PHP
A bug in the ListManagerImpl class of the PHP API caused an incorrect behaviour regarding the
error handling.

• Bugfix: Error handling in Mailing - PHP
Another bug in the MailingImpl class of the PHP API caused an incorrect behaviour regarding
the error handling.

• Bugfix: Last modification date of filters / target groups - All languages
Creating or editing filters (aka target groups) using the API did not change the last modification
date.

• Bugfix: Select methods in BounceManager - All languages
The select methods of the BounceManager threw a NullPointerException if a date parameter
was null. From now on, if a date parameter is null, that parameter will be ignored.

Developer Guide | www.inxmail.com 16

Dep
rec

ate
d

1. Change History

1.24. Inxmail API 1.9.0

Changes in API 1.9.0, since Inxmail Professional 4.2

• New: Webpage management
The new WebpageManager can be used to retrieve information about JSPs and HTML forms.

• New: Inbox management
The new InboxManager can be used to retrieve messages received via the inbox.

• New: Visibility of recipient attributes
It is now possible to set the visibility of recipient attributes either for a single list or all lists via the
AttributeManager.

• New: Mailing approval deadline / escalation
Two new methods were added to the MailingManager to retrieve the approval deadline and
escalation dates.

• New: Design collection display name
A new method in the DesignCollection class can be used to retrieve the display name of the
design collection.

• New: Subscription management
The SubscriptionManager can now be used to update recipient attributes during unsubscription
and is able to handle mailing references.

• New: Multiple defined header fields
Using a new method in the MailContent class it is now possible to retrieve multiple defined
header fields.

Note: Incorrect documentation regarding close() methods
The documentation of some classes stated that the close() method would also be called when
the corresponding object is garbage collected. This is not correct and can lead to memory
problems, especially when applied to sessions. It is strongly recommended to close all sessions
and row sets manually. The documentation was corrected accordingly.

Note: New handling of orphaned unsubscriptions
Starting with Inxmail Professional 4.2, unsubscriptions of recipients who are no longer member
of the list at hand (neither subscribed nor unsubscribed) will be marked as NOT_IN_LIST_-
UNSUBSCRIPTION.

• Note: Documentation improvement for Java and PHP
The Java and PHP documentation was completely revised to be more comprehensive and un-
derstandable. Also, the PHP documentation now takes into account some PHP specifics.

• Note: Report documentation error
There was an error in the documentation of the ClickReactionTimeResponse report which was
corrected.

Bugfix: Error handling in DesignCollectionManager - All languages The importDesignCol-
lection method threw a NullPointerException if the template feature was not available. From
now on a FeatureNotAvailableException will be thrown. Therefore, existing code relying on a
NullPointerException being thrown must be changed to catch the FeatureNotAvailableException
instead.

• Bugfix: existsTestRecipient in Utilities class - Java
The existsTestRecipient method in the Utilites class threw a NullPointerException in version
1.8.0 of the Java API. The PHP5 and .NET APIs are not affected.

Developer Guide | www.inxmail.com 17

Dep
rec

ate
d

1. Change History

• Bugfix: Scheduling of mailings - PHP5
A bug in the Mailing class made it impossible to schedule a mailing properly.

• Bugfix: Approval of mailings - PHP5
Due to a bug in the Mailing class it was not possible to request the approval of a mailing.

• Bugfix: setAttributeValue in RecipientContext - PHP5
The setAttributeValue method in the RecipientContext class threw a fatal error.

• Bugfix: Select methods in BounceManager - PHP5
The selectBefore() and selectAllBounces() methods in the BounceManager class threw errors.

• Bugfix: Test recipient management - PHP5
The creation and manipulation of test recipients, as well as the retrieval of test recipient attributes
was not possible.

• Bugfix: Subscription log - PHP5
The retrieval of log entries using the SubscriptionManager and the retrieval of the log message
using the SubscriptionLogEntryRowSet did not work.

• Bugfix: Resubscription of recipients - PHP5
Unsubscribed recipients could not be resubscribed using the UnsubscriptionRecipientRowSet.

• Bugfix: formatAttributeChoice in FormatChoicePropertyFormatter - PHP5
The formatAttributeChoice method in the FormatChoicePropertyFormatter class threw a fatal
error.

• Bugfix: parseApprovalPropertyValue in PropertyFormatter - PHP5
The parseApprovalPropertyValue method in the PropertyFormatter class threw a fatal error.

• Bugfix: Plugin store - PHP5
The get and put methods in the PluginStore did not work properly. The get method threw an
error, the put method simply blocked and did nothing.

• Bugfix: Who am I - PHP5
A bug prevented the whoAmI method in the UserContext from returning the user object.

• Bugfix: Exception handling - PHP5
Some exceptions could not be rebuild correctly and threw warnings instead.

1.25. Inxmail API 1.8.0

Changes in API 1.8.0, since Inxmail Professional 4.1

• New: Linktypes for new (un)subscription links
DataAccess is now extended with new link types.

• New: Subscription log extended with pending states
Pending un- and subscription states added.

Bugfix: Heartbeat problem in Java api 1.7.2
In Inxmail Professional API 1.7.2 for Java the heartbeat is not started correct, so we recommend
to switch to this version or 1.7.1

• Bugfix: remove() in BOResultSet of MailingTemplates does not work
The remove() method doesn’t work in versions before 1.8.0, the mailing templates are not
deleted when calling boresultset.remove(new Inde...);.

• Internal Changes: Changing build to Maven
As preparation of an Inxmail hosted Maven repository switched build from Ant to Maven.

Developer Guide | www.inxmail.com 18

Dep
rec

ate
d

1. Change History

1.26. Inxmail API 1.7.2

Changes in API 1.7.2, since Inxmail Professional 4.0.2

• New: Clone mailing
Now it is possible to clone a mailing with a single method call (MailingManager.cloneMailing(...)).

• New: Hessian uses GZIP compression
When using the Hessian protocol as default GZIP compression is now activated.

1.27. Inxmail API 1.7.1

Changes in API 1.7.1, since Inxmail Professional 4.0.1

• New: Mailing creation date
The creation date of a mailing is now available.

1.28. Inxmail API 1.7.0

Changes in API 1.7.0, since Inxmail Professional 4.0.0

• New: Plugin data store
Information can now be stored on the Inxmail Professional System.

• New: Plugin whoami
Plugins can now ask the Inxmail Professional Server which user currently is using the plugin.

• New: Feature id
Introducing a new feature id for the template agent.

Bugfix: Fixed bug in Hessian
There is a major bug in the implementation of the Hessian protocol, so we recommend to switch
to this api version.

1.29. Inxmail API 1.6.2

Changes in API 1.6.2, since Inxmail Professional 3.8.2.16

• New: DataAccess extended
Click data can be searched by time.

• Bugfix: Fixed bug in .NET
It was not possible to login in shorten times.

1.30. Inxmail API 1.6.1

Changes in API 1.6.1, since Inxmail Professional 3.8.2

• New: Testmailing can be send with test profile
Test mailing can be send with test profile.

• New: Bounce handling extended
Bounce handling is extend, now it is possible to fetch recipient attributes.

Developer Guide | www.inxmail.com 19

Dep
rec

ate
d

1. Change History

• New: Inxmail Professional ASP Portal
The Java and .NET API has added support for the new Inxmail Professional ASP Portal. For
using the PHP5 API please read chapter 3.1.

• Bugfix: Fixed minor bug in PHP5 API
Constant has a wrong name

1.31. Inxmail API 1.6.0

Changes in API 1.6.0, since Inxmail Professional 3.8.1

• New: Testprofiles can be used
It is possible to create/delete/change testprofiles. Also creating a preview of mailing with test
recipients is possible.

• New: Hardbounce attribute
A hardbounce attribute is introduced with this version of the Inxmail Professional API.

• New: Unsubscribed recipients can be retrieved
Now it is possible to access the unsubscribed recipients of a list. Also it possible to resubscribe
them and unsubscribe recipients.

• New: Approval for mailings can be used
Approval methods are added to the Inxmail Professional API. Also methods for activating ap-
proval for a list are added.

• New: Approver management
It is possible to create/delete/change approver.

• New: Multiple target groups in mailings
Multiple target groups can be set for mailings.

• New: Actions added
New actions for handling subscription and unsubscription introduced.

• New: Security check for Plugin access
Plugins should use the new login method with plugin secret id. Also recipient attributes supports
access rights, so only allowed attributes can be access. For more information please read the
Plugin documentation.

• Bugfix: Fixed minor bug in PHP5 API
Removing warning when unset values are accessed.

• Bugfix: Missing subscription log entries added
Adding double opt-in/out log entries to the subscription log entries.

• Bugfix: Hessian protocol serializer does not work correct in .NET API
Not the correct serializer was used to serialize arrays, so many error messages shown in the
server logs. But the API works as expected.

1.32. Inxmail API 1.5.0

Changes in API 1.5.0, since Inxmail Professional 3.8.0

• New: Login with token possible
It is possible to login with a token which is created by the Inxmail Professional Client. This can
be used for plugin development.

Developer Guide | www.inxmail.com 20

Dep
rec

ate
d

1. Change History

• New: Buildmode
Adding a new buildmode for building mailings with simple links.

• Bugfix: Fixed bug in PHP5 API
In the Inx_Api_Recipient_RecipientRowSet was an error when updating date values and fetch-
ing recipients backwards.

• Bugfix: Fixed bug in PHP5 API
In the Inx_Api_Recipient_BatchChannel was an error when adding recipients.

• Bugfix: Fixed bug in PHP5 API
Fixed selecting bounces by mailing id.

• Bugfix: Fixed bug in PHP5 API
In the Inx_Api_Recipient_BatchChannel was an error when adding recipients.

• Bugfix: Fixed bug in PHP5 API
Fixed error when retrieving mailings.

• Bugfix: Fixed bug in .NET and Java API
Ignoring case considerations when getting user attribute.

• Bugfix: Fixed several bugs in .NET
Fixed timeout problems when using Hessian and recreating sessions with Hessian.

Bugfix: Default API role have access to the recipient data
The default API user role can only login over the API and nothing more. Added missing check
in recipient context.

• Bugfix: Direct bounces have no sender address
Fixed problem when retrieving bounces with have no sender address.

1.33. Inxmail API 1.4.4

Changes in API 1.4.4, since Inxmail Professional 3.7.1

• New: Access subscription log
Retrieving of the subscription log entries is now possible.

• New: Set/Get of a mailing name
Mailings which are created over the api can set a mailing name.

• New: Getting server time
With this version of the Inxmail API it is possible to get the time of the Inxmail Professional
Server.

Note: Inxmail API for .NET supports .NET Framework >= 2.0
Since this version only .NET 2.0 and higher is supported.

• New: .NET supports now Hessian
When using the .NET API, it is now possible to use the Hessian protocol.

• New: .NET has ”Strong Name” for using GAC
Adding a ”Strong Name” to the .NET API which makes it possible to store the assembly in the
global assembly cache.

• New: .NET is now COM Visible
Now the API can be used as COM objects in programming languages like Delphi or FoxPro.

Developer Guide | www.inxmail.com 21

Dep
rec

ate
d

1. Change History

• Bugfix: Fixed bug in PHP5 API
In the Inx_Api_Recipient_RecipientRowSet was an error when updating boolean values.

1.34. Inxmail API 1.4.3

Changes in API 1.4.3, since Inxmail Professional 3.7

• New: Search for link names in Data Access
Now it is possible so search for link data with the name of link.

• New: Getting list size
Adding a new method for getting the list size and the list size computation date.

• New: Getting more info of a sent mailing
Introducing a new object which contains infos about the sent mailing, such as average mail size
or number of bounces

• New: Bounce handling
Adding a new service for retrieving bounce mails. With Inxmail Professional 3.7 you can get
which recipient has bounced.

• New: Search for blacklist entries
Adding new methods for searching in blacklist with given search dates.

• New: Secure login available for PHP5 and .Net API
Now secure login in all three programming languages available.

New: Property for test recipient deprecated
In Inxmail Professional 3.7 the test recipient in a list is replaced by test profiles. The test recipient
property will be removed in further versions of the Inxmail API. It should not be used anymore.

1.35. Inxmail API 1.4.2

Changes in API 1.4.2

• New: Additional temporary mailing method
This new methods makes easier to send a temporary mailing without using a recipient id.

• New: Data Access has a new method
Adding a new method for retrieving link data which uses the new link type opening rate.

• New: More Login Exceptions
Adding new Login Exception for the new password behavior, for example password timed out.

New: Bugfix in Hessian API
Customers which use Hessian protocol are strongly recommended to change to the new version,
which is in the API-Zipfile. There was a bug in transfering boolean values between client and
server.

1.36. Inxmail API 1.4.1

Changes in API 1.4.1

• New: Buildmode for Mailings
Added two new modes for building Mailings. See Chapter 3.11.2 "Mail Preview".

Developer Guide | www.inxmail.com 22

Dep
rec

ate
d

1. Change History

1.37. Inxmail API 1.4.0

Changes in API 1.4.0

• New: Hessian Protocol
Added support of a faster protocol for Java.

• New: Textmodule management
Added management of textmodules, allowing to add, select, and change textmodules via API.

• New: Mailing template management
Added management of mailing templates, allowing to add, select, and change mailing templates
via API.

• New: Design collection management
Added management of design collections, allowing to add, select, and change design collections
via API.

1.38. Inxmail API 1.2.0

Changes in API 1.2.0, since Inxmail Professional 3.2 build 060130.

• New: Actions management
Added management of actions, allowing to add, select, and change actions via API.

• New: Filter for "MailingManager.select"
Introduced new filter options to select Mailings. See Chapter 3.11.2 "Retrieval of Mailings".

• New: createRecipient with alternative key attribute
Introduced option for Batch Channel to operate with alternative key attribute instead of email
address. See chapter 3.8.7.

• New: Blacklist management
Added management of blacklist, so blacklist rules can selcted, deleted, added and changed.
See chapter 3.11.13, "BlacklistManager".

• Doc: Batch Channel
Added missing documentation of return value from executeBatch: Values above zero are recip-
ient ids.

Developer Guide | www.inxmail.com 23

Dep
rec

ate
d

2. Introduction

The Inxmail API (Application Programming Interface) enables other applications to access and con-
trol Inxmail Professional and Enterprise. Thus, third parties can extend Inxmail by adding own
functionality and services. It is shipped as an integral part of Inxmail. No license is needed for the
local, anonymous login. Otherwise an "API Module License" must be acquired.
The technologies used for the API are independant of platforms and programming languages.
Therefore, API calls can be done from software written in any programming language, running
on any platform, like Java applications on Linux, or .NET apps on Windows.
Remote API calls are transported over HTTP/HTTPS. The API is based on SOAP (Simple Object
Access Protocol), which itself utilizes XML. To ease writing software with the API, default "wrappers"
for Java, .NET and PHP are provided, called "Inxmail API for Java", "Inxmail API for .NET", and
"Inxmail API for PHP". Please note that direct access to the SOAP layer or other wrappers are not
supported by Inxmail GmbH.

2.1. Security Issues

The API differentiates between local and remote calls. Local calls do not need a username or
password to log in, and can only be performed from Java applications which are running on the
same computer and inside the same virtual machine as the Inxmail server.
Remote calls can be performed from any computer having access to the Inxmail server via HTTP.
Enabling remote API calls might pose a security threat. Therefore, these calls need to login with
a username and password, and the target user needs to have the user right "Remote API login"
enabled. To secure remote calls even further, the "Allowed IP mask" in the user’s definition can
disallow logins which do not match this mask.
User credentials on login are communicated to the server either in plain text or encrypted using
challenge response encryption with SHA256. Since encryption is a time consuming process, many
developers opt for plain text over SSL-secured HTTP (HTTPS).

2.2. System Requirements

To use the API, access to an Inxmail Server is necessary. For remote calls, the server calling
Inxmail needs to be able to access the Inxmail Server via HTTP.
For local calls from Java applications, these applications need to be either Java Servlets or JavaServer
Pages, installed in the same web application directory as the Inxmail application. Remote calls to
the API need a valid API license on the Inxmail Server. Please note also that only Java 8 or newer
is supported.

2.3. Inxmail API for Java

To use the API from Java applications, the libraries in the folder /java/lib need to be in your class-
path. For web applications, copy these libraries to the /WEB-INF/lib directory in the applications
"webapps" folder.
These libraries are: inxmail_api.jar, inxmail_apiimpl.jar, axis.jar, commons-discovery.jar, commons-
logging.jar, jaxrpc.jar, saaj.jar, wsdl4j.jar and hessian-3.0.13.jar .

Developer Guide | www.inxmail.com 24

Dep
rec

ate
d

2. Introduction

2.3.1. Running the Samples

ListDemo.java
This application demonstrates how to retrieve the available lists, figure out if subscription is possible
to this list and how to get the number of recipients per list. It has no graphical user interface.
To compile it on Windows systems, call "build.bat ListDemo". To run it, call "run.bat ListDemo" with
server address, username and password as parameters.
MailingDemo.java
This sample demonstrates the creation and sending of mailings. To run this demo, please create a
standard mailing list. You need to have at least one recipient in the system list, whose data is used
for personalization. The created mailing will be sent to an email address passed as parameter to
this demo.
To compile it on Windows systems, call "build.bat MailingDemo". To run it, call "run.bat Mail-
ingDemo" with server address, username and password as parameters.
MailingAttachDemo.java
Extends MailingDemo with adding an attachment to a mailing.
RecipientDemo.java
This application demonstrates how to add recipients to a list, and the usage of the "BulkChannel".
For this it creates a new mailing list.
To compile it on Windows systems, call "build.bat RecipientDemo". To run it, call "run.bat Recipi-
entDemo" with server address, username and password as parameters.
web-demo.war
This is a small web interface to Inxmail, demonstrating the main features of the API. To run it, deploy
the "web-demo.war" to you application server. Point your web browser to the "/web-demo/login.jsp"
page. Here, enter the same login information as you would do for an Inxmail Client.
The web demo is based on JSP technology. No extra classes are created, so you can easily look
into the source code to learn how to use the API.

2.3.2. Code Snippets

Additional Java code snippets illustrating a wide range of use cases are provided in the ’snippets’
folder of the API ZIP archive.

Developer Guide | www.inxmail.com 25

Dep
rec

ate
d

3. API Description

Following chapters give detailed information about how to program using the Inxmail API with the
Java. Code examples are written for Java software.

3.1. Sessions

All API calls need a valid session on the Inxmail Server. The Session class is used to establish
connections to the Inxmail Server and is the starting point for all applications using the API.

3.1.1. Login and Logout

Anonymous Local Sessions

Inxmail supports two types of log in: "local login" and "remote login". Local logins do not need a
username or password. They can only be performed from Java applications which are running on
the same computer and inside the same virtual machine as the Inxmail server. Typically, JSP pages
on the Inxmail Server use this login.
Local, anonymous logins have limited access rights. They are allowed to manipulate recipient data
(select/insert/update/delete), subscribe and unsubscribe recipients into any mailing list, view and
preview existing mailings. An anonymous login is not allowed to manipulate mailing lists nor their
properties, create new attributes, or to manipulate mailings.

Remote Named Sessions

Remote logins can be performed from any computer which have access to the Inxmail Server via
HTTP1. Enabling remote API calls might pose a security threat. Therefore, these calls need to login
with a username and password, and the target user needs to have the user right "Remote API
login" enabled. To secure remote calls even further, the "Allowed IP mask" in the user’s definition
can disallow logins which do not match this mask. The first example creates a session using
local calls (only in Java) with a default user. The second example explicitly gives the username and
password to use for log in:

Session s = Session.createLocalSession();
Session s = Session.createLocalSession("api−user",

"test");

For remote calls, username and password have to be always available. The target user needs to
have the user right "Remote API login" enabled:

Session s = Session.createRemoteSession(
"http://127.0.0.1/inxmail0", "api−user", "test");

Full example:

1Remote login requires an API license on the Inxmail Server!

Developer Guide | www.inxmail.com 26

Dep
rec

ate
d

3. API Description

import com.inxmail.xpro.api.Session;

public class Login
{

public static void main(String[] args)
{

Session session = null;
try {

session = Session.createRemoteSession(
"http://127.0.0.1/inxmail0", "api−user",
"test");

}
catch(LoginException x) {

x.printStackTrace();
}
catch(RuntimeException x) {

x.printStackTrace();
}
finally {

if(session != null)
session.close();

}
}

}

The example above uses the SOAP protocol to communicate with the server. When using the Java
or .NET version of this API, we strongly recommend using the Hessian protocol. For more informa-
tion, see section 3.2 Using the Hessian Protocol.

If you are already using Java 7 you can also use the try-with-resources statement, as Session
implements Closeable which in turn extends AutoClosable since Java 7. The try-with-resources
statement automatically closes the given resource in a non-visible finally block and performs the
necessary null checks. The following snippet shows how to work with a Session using the try-with-
resources statement:

try (Session session = Session.createRemoteSession(
"http://127.0.0.1/inxmail0", "api−user", "test"))

{
// use session

}
catch(LoginException x)
{

x.printStackTrace();
}
catch(RuntimeException x)
{

x.printStackTrace();
}

User credentials on login are communicated to the server either in plain text or encrypted using a
challenge response method with SHA256 encryption. Since encryption is a time consuming pro-
cess, many developers opt for plain text over SSL-secured HTTP (HTTPS). Encryption is enabled
with the extract parameter to the createRemoteSession method:

Session s = Session.createRemoteSession(
"http://127.0.0.1/inxmail0", "api−user",
"test", true);

3.1.2. Using Proxy Servers

If you need to pass through a Proxy server, set the Proxy parameters before creating the session:

Developer Guide | www.inxmail.com 27

Dep
rec

ate
d

3. API Description

System.setProperty("http.proxyHost",
"192.168.1.142");

System.setProperty("http.proxyPort",
"8080");

System.setProperty("http.nonProxyHosts",
"localhost|127.0.0.1");

System.setProperty("http.proxyUser",
"proxyuser");

System.setProperty("http.proxyPassword",
"test");

3.2. Using the Hessian Protocol

Hessian is a binary protocol which is supported by the Java and .NET version of this API. It is
strongly recommended to use Hessian in these languages, since it has several advantages com-
pared with the standard XML-based SOAP protocol:

• it is significantly faster

• it significantly reduces network traffic

• full support for three byte UTF-8 characters and partial support of four byte UTF-8 characters

The Java API fully supports UTF-8 characters, if Java 11 or higher is used. The .NET API fully
supports UTF-8 for read access. Using .NET write access with UTF-8 is limited. Four byte
characters cannot be used here.

Simply use ’hessian://’ instead of ’http://’ or ’hessians://’ instead of ’https://’ to connect to the server.

Session s = Session.createRemoteSession(
"hessian://127.0.0.1/inxmail0", "api−user",
"test", true);

Note: Starting with API version 1.7.2, GZIP compression for hessian is enabled by default. To
disable compression, set the system property inxmail.nohessiancompression to true. When
Using the .NET version of this API, set the property as an environment variable.

3.3. Getting the Inxmail Professional Server time

The server time is needed if the Inxmail Professional Server is in another timezone located as
the programm which uses the Inxmail API. The GMT and daylight saving time offset is given in
milliseconds.

ServerTime st = s.getServerTime();
System.err.println(st.getDatetime() + " " + st.getGMTOffset() +

" " + st.getDSTOffset() + " "
+ st.getTimezoneId());

3.4. Sending temporary Mails

The Inxmail API provides a mechanism for sending temporary mails to a single recipient. The
advantage of this mechanism is that the recipient must not in the Inxmail System or subscribed in a
list. These mails are not personalized, not trackable and not saved in Inxmail.

Developer Guide | www.inxmail.com 28

Dep
rec

ate
d

3. API Description

ListContextManager lcm = s.getListContextManager();
ListContext lc = lcm.findByName(SystemListContext.NAME);

TemporaryMailSender tempSender = s.getTemporaryMailSender();

TemporaryMail tempMailing = tempSender.createTemporaryMail(lc);
tempMailing.updateRecipientAddress("recipient@domain.invalid");
tempMailing.updateSenderAddress("sender@domains.invalid");
tempMailing.updateSubject("Temporary Mailing");
tempMailing.setContentHandler(HtmlTextContentHandler.class);
HtmlTextContentHandler contentHandler = (HtmlTextContentHandler)

tempMailing.getContentHandler();
contentHandler.updateContent("<html><head></head><body>Hi there,
"

+ "this is a temporary mailing!</body></html>");
boolean success = tempSender.sendTemporaryMail(tempMailing);
if(success)

System.out.println("Mailing sended.");
else

System.out.println("Mailing not sended.");

3.5. BusinessObjects and BOResultSets

The API gives access to objects of Inxmail, which are called "BusinessObjects". For example, a
mailing lists in Inxmail is such a Business Object.

Values of BusinessObjects and BOResultSets can be changed with the "update" methods (like "up-
dateName"). By calling "commitUpdate" on such an object, changes will be passed to the server.
Rollback is done by the "reload" method, which reloads the object and discards all uncomitted
changes.

A BOResultSet is a list of BusinessObjects. The result set can be used to browse through this
list, and to remove elements of the list.

Since Inxmail Professional API 1.17.0 there are also LongBusinessObjects and LongBOResultSets,
which have the same functionality but use long as type of the ID.

From Inxmail Professional API 1.11.4, BOResultSet is generic and implements Iterable. This en-
ables you to use a for-each loop on the result set and to retrieve the business objects without the
need to downcast them to the specific type. The MailingManager for example delivers result sets
of type BOResultSet<Mailing>. The following sample demonstrates the different ways to retrieve
business objects from the result set.

Developer Guide | www.inxmail.com 29

Dep
rec

ate
d

3. API Description

MailingManager mgr = session.getMailingManager();

// the result set is now typed with Mailing:
BOResultSet<Mailing> set = null;

try
{

// no unsafe type casts needed, each manager returns a correctly typed result set
set = mgr.select(listContext, Mailing.STATE_SENT);

// it's still possible though, to assign the set to an untyped variable (generates warning):
BOResultSet legacySet = set;

// traditional way of iterating through the result set (still works)
for(int i = 0; i < set.size(); i++)
{

Mailing mailing = (Mailing)set.get(i);
// the down cast is unnecessary, as the result set is typed with Mailing:
mailing = set.get(i);
System.out.println(mailing.getName());

}

// iterate through the result set using for−each loop without casting
for(Mailing mailing : set)
{

System.out.println(mailing.getName());
}

}
finally
{

if(set != null)
set.close();

}

From Inxmail Professional API 1.11.4 BOResultSet also implements Closeable which in turn ex-
tends AutoClosable since Java 7. This enables the use of the try-with-resources statement for Java
7 users, further reducing the complexity of the result set usage. The try-with-resources statement
automatically closes the given resource in a non-visible finally block and performs the necessary
null checks. The following snippet demonstrates the usage of a BOResultSet using the try-with-
resources statement:

MailingManager mgr = session.getMailingManager();

try (BOResultSet<Mailing> set = mgr.select(listContext, Mailing.STATE_SENT))
{

for(Mailing mailing : set)
{

System.out.println(mailing.getName());
}

}

The same is true for all row sets in the Inxmail Professional API which are derived from InxRowSet,
as well as the RecipientContext, TestRecipientContext, MailingRenderer, TriggerMailingRenderer
and ReportTicket classes.

The interfaces of BusinessObjects and BOResultSets are defined as follows:

Developer Guide | www.inxmail.com 30

Dep
rec

ate
d

3. API Description

Interface BusinessObject
public int getId()
public void commitUpdate() throws UpdateException, DataException
public void reload() throws DataException

Interface BOResultSet<T extends BusinessObject> extends Iterable<T>
public T get(int index) throws DataException
public int size()
public boolean remove(IndexSelection selection)
public void close()

The recipient addresses are one of the exceptions of this rule. They are managed not in BOResult-
Sets, but by the specialized class "RecipientRowSet".

3.6. ListContext Management

A ListContext corresponds to a folder in Inxmail, like a mailing list or the system folder. The List-
ContextManager is used to access and manipulate these folders.
The ListContext is an interface with following concrete implementations:

AdminListContext : The "Administration" list.

FilterListContext : This is a "Dynamic Mailing List" in Inxmail. It has methods for getting and
setting the filter condition the dynamic list is based on.

StandardListContext : A normal mailing list.

SystemListContext : The "System list" in Inxmail.

To browse though all accessible lists (corresponding to the user’s access rights), a result set can
be optained by calling selectAll of the ListContextManager.

ListContextManager lm = session.getListContextManager();
BOResultSet rs = lm.selectAll();

for(int i = 0; i < rs.size(); ++i)
{

ListContext l = (ListContext)rs.get(i);

System.out.println("List−Id : " + l.getId());
System.out.println("Name : " + l.getName());
System.out.println("Description: " + l.getDescription());

}
rs.close();

3.6.1. Creating, Searching and Naming Lists

New mailing lists are created by the ListContextManager, which can be optained from the session
object. The list will not be created until commitUpdate has been called.

StandardListContext lc = (StandardListContext)
session.getListContextManager().createStandardList();

Set the list name with the updateName method. If the list cannot be renamed (for example, a list with
that name already exists), an UpdateException will be thrown.

lc.updateName(name);
lc.commitUpdate();

The ListContextManager can be consulted to find lists by their name:

Developer Guide | www.inxmail.com 31

Dep
rec

ate
d

3. API Description

ListContextManager lm = session.getListContextManager();
ListContext lc = lm.findByName(name);

For FilterListContext, a filter condition can be defined.

FilterListContext lc = (FilterListContext)
session.getListContextManager().createFilterList();

lc.updateName("NewYorkList");
lc.updateFilterStmt("City = \"New York\"");
lc.commitUpdate();

3.6.2. Size of Lists

With the Inxmail API 1.4.3 you are able to get the list size and the computation date of the list
size. It is stored in the ListSize object which can be retrieved by using the following methods in the
ListContext:

public ListSize getListSize() throws DataException;
public ListSize getListSize(boolean computeNow) throws DataException;

Caution: Refreshing the list size can produce a very high load on the Inxmail server. Use this
with caution.

3.6.3. List properties

Mailing lists have properties, which control behaviour like the maximal sending performance or
which are used by features.
The properties can be accessed through these methods:

public Property findProperty(String propertyName);
public BOResultSet selectProperties();

The property class can be found in com.inxmail.xpro.api.property.

Note: The property for test recipient is deprecated. Do not use it anymore, it will be removed in
further versions.

3.7. Synchronizing tracking permissions

Inxmail Professional is capable of tracking which recipients have clicked which links. This feature
enables the creation of target groups for handling recipient who clicked on a specific link differently
from those who didn’t, e.g. by sending different mailings. This practice is also referred to as "link
tracking" and requires the explicit consent of the recipient.

In Inxmail Professional, the recipient’s consent to be tracked is modeled as "tracking permission".
Each tracking permission has the scope of one particular list only. There is no concept of a global
tracking permission or a single tracking permission for multiple lists. A recipient may grant different
tracking permissions for different lists. Therefore, tracking permissions must be synchronized in a
list specific manner.

The Inxmail Professional API offers various ways for synchronizing tracking permissions:

• Using the RecipientRowSet

• Using the BatchChannel

Developer Guide | www.inxmail.com 32

Dep
rec

ate
d

3. API Description

• During the subscription process using the SubscriptionManager

• Using the new TrackingPermissionManager

The following sections describe the trade-offs between those variants.

3.7.1. RecipientRowSet

The RecipientRowSet is a good choice for synchronizing tracking permissions if you also want to
synchronize recipient data.

Be aware though, that enabling the usage of tracking permission attributes when creating the
RecipientContext also results in a performance degradation. How severe this degradation is
depends on the number of standard lists in the target system, as each standard list produces a
tracking permission attribute.

Therefore, we recommend to use the RecipientRowSet only when synchronizing the tracking per-
missions for multiple lists together with recipient data.

3.7.2. BatchChannel

The BatchChannel is ideal for importing a huge number of tracking permissions without the need to
check the existing permissions. This is due to the write-only nature of the BatchChannel. It is also
the ideal choice when importing tracking permissions together with recipient data.

The aforementioned performance degradation when creating the RecipientContext with tracking
permission attributes does not apply to the BatchChannel.

In case you have to synchronize a huge amount of tracking permissions but have to check the
existing permissions, we recommend a three-stage approach:

1. Check the existing permissions using the log provided by the TrackingPermissionManager

2. Merge the existing tracking permissions with the tracking permissions in the third party system

3. Import the merged tracking permissions into Inxmail Professional using the BatchChannel

3.7.3. SubscriptionManager

The SubscriptionManager is the best choice when the tracking permission shall be imported during
the subscription process. This is usually the case when you are building a subscription form or when
you import unverified subscriptions into Inxmail Professional in order to complete the double opt-in
process.

3.7.4. TrackingPermissionManager

The TrackingPermissionManager is serving several purposes:

1. Determining which recipients currently have given a tracking permission on which lists

2. Granting the tracking permission for a specific recipient and list (i.e. creating a tracking per-
mission)

3. Revoking the tracking permission for a specific recipient and list (i.e. deleting a tracking per-
mission)

4. Accessing the tracking permission log with all notable changes to the tracking permissions

Developer Guide | www.inxmail.com 33

Dep
rec

ate
d

3. API Description

The TrackingPermissionManager is ideal for fetching the currently granted tracking permissions
without additional recipient data, as it offers way better performance than the RecipientRowSet.

It can also be used to grant or revoke (i.e. create or delete) tracking permissions. As this can’t
be done for multiple tracking permissions at once, consider using the BatchChannel when import-
ing a considerable number of tracking permissions.

The tracking permission log, which is also accessible via the TrackingPermissionManager, is the
only way to retrieve changes in the tracking permissions. It is therefore used whenever tracking
permissions have to be merged between Inxmail Professional and a third party system. Using the
timestamps in the log, you can determine which system has the newest data and use this informa-
tion to determine the current tracking permission.

3.8. RecipientContext

The RecipientContext is used to access recipient data. Getting this context from the session will get
a snapshot of the current attribute defined. This snapshot will be used for the lifetime of the context,
changes in the underlying attribute configuration won’t be reflected to it. This ensures that you can
savely work with recipient data, even if other users possibly add or change attributes.
Following example illustrates how to list the email addresses of all recipients in a list named "test":

RecipientContext rc = session.createRecipientContext();
RecipientMetaData rmd = rc.getMetaData();
Attribute attrEmail = rmd.getEmailAttribute();

ListContextManager lm = session.getListContextManager();
ListContext lc = lm.findByName("test");

RecipientRowSet rrs = rc.select(lc, attrEmail, Order.ASC);

while(rrs.next())
System.out.println(rrs.getString(attrEmail));

rrs.close();
rc.close();

Instead of creating a new RecipientContext repeatedly (possibly without any need to do this), it is
also possible to check whether some attributes have changed. This can be achieved using the
isUpToDate method.
The following snippet shows how to use this method:

RecipientContext rc = session.createRecipientContext();

while(!taskDone)
{

if(!rc.isUpToDate())
{

rc.close();
rc = session.createRecipientContext();

}

// perform some operations on the recipient context
}

rc.close();

Of course this is a very simple example, though it illustrates how to update the RecipientContext
only if needed. A more realistic example might be a triggered operation that checks if the Recipi-
entContext is still up to date (possibly some time passed after the last trigger) before executing the
operation.

Developer Guide | www.inxmail.com 34

Dep
rec

ate
d

3. API Description

Note: A RecipientContext object must be closed once it is not needed anymore to prevent memory
leaks and other potentially harmful side effects.

If you are already using Java 7 you can also use the try-with-resources statement, as RecipientCon-
text implements Closeable which in turn extends AutoClosable since Java 7. The try-with-resources
statement automatically closes the given resource in a non-visible finally block and performs the
necessary null checks. The following snippet shows how to work with a RecipientContext using the
try-with-resources statement:

try (RecipientContext rc = session.createRecipientContext())
{

Attribute email = set.getMetaData().getEmailAttribute();

try (RecipientRowSet set = rc.createRowSet())
{

set.moveToInsertRow();
set.updateString(email, "new@recipient.invalid");
set.commitRowUpdate();

}
}

3.8.1. Adding New Recipients

In the Inxmail client, the table of recipients has an "insert" row, which is always the last in a table
and marked with an asterisk. Adding recipients in the API is like in the Inxmail client: move to this
"insert" row, edit the email address and then all the other data fields. Remember to commit your
changes, otherwise they don’t be reflected on the server. Following code will fails if the address is
already in the system.

RecipientContext rm = session.createRecipientContext();
RecipientMetaData rmd = rm.getMetaData();
RecipientRowSet rrs = rm.createRowSet();

// Move to the "insert" row and set the values:
rrs.moveToInsertRow();
rrs.updateString(rmd.getEmailAttribute(), "andi@company.com");
rrs.updateString(rmd.getUserAttribute("Firstname"), "Andi");

try
{

rrs.commitRowUpdate();
}
catch(DuplicateKeyException x)
{

// A recipient with the specified e−mail address is already present
}

rrs.close();
rm.close();

Adding more than one recipients at a time is very slow. For large amount of data use a BatchChan-
nel.

3.8.2. BatchChannel

The createRecipient and selectRecipient methods are used to create and/or select a recipient.
After creating or selecting a recipient, the following batch commands operate on this until another
recipient is selected.

Developer Guide | www.inxmail.com 35

Dep
rec

ate
d

3. API Description

public void createRecipient(Object key, boolean selectIfExistant);
public void selectRecipient(Object key);
public void removeRecipient(Object key);
public void write(Attribute attribute, Object value);
public void writeIfNull(Attribute attribute, Object value);
public void unsubscribe(ListContext lc);
public void subscribeIfNotUnsubscribed(ListContext lc, Date subscriptionDate);
public void writeTrackingPermission(ListContext lc, TrackingPermissionState trackingPermissionState);

Following example shows how to add two new addresses and change their "Firstname" attribute. If
the addresses exist already, this value will be overwritten.

RecipientContext rc = session.createRecipientContext();
BatchChannel bc = rc.createBatchChannel();
RecipientMetaData md = rc.getMetaData();

bc.createRecipient("mueller@yourcompany.com", true);
bc.write(md.getUserAttribute("Firstname"), "George");

bc.createRecipient("clinton@yourcompany.com", true);
bc.write(md.getUserAttribute("Firstname"), "Bill");

int ret[] = bc.executeBatch();

Each command to the BatchChannel results in a value in the returned integer array. By scanning
the array, you can find out which of the commands have been executed, and which have not. It must
be considered that the operations will be executed in exactly the same order as they are added to
the BatchChannel. The integers are of these constants:

RESULT_COMMITED - The batch command has been committed.

RESULT_NOT_COMMITTED - The command has not been comitted.

RESULT_FAILURE_ILLEGAL_VALUE - The command has not been executed because the value was
not allowed.

RESULT_FAILURE_BLOCKED_BY_BLACKLIST - The email address cannot be inserted or updated,
since it is blocked by the blacklist.

RESULT_FAILURE_DUPLICATE_KEY - The email address cannot be inserted or updated since it al-
ready exists.

RESULT_FAILURE_KEY_NOT_FOUND - The unique key was not found by the selectRecipient()

method.

values above zero - Recipient id

Note: The ordering of commands is very important. For example, if specific recipients should be
subscribed to a list and a certain tracking permission should be set for them, the subscribtion
command has to be performed first. Otherwise the tracking permission will be ignored. There is
a special list property named TRACKINGPERMISSION_DETACHED_FROM_MEMBERSHIP,
which allows writing a tracking permission to a list, even if the recipient isn’t subscribed to that
list.

3.8.3. Searching Recipients

To search recipients, pass a filter condition to the select method of the RecipientContext. You
can also use the Inxmail Professional Functions which are documented in the Inxmail Professional
Client manual.

Developer Guide | www.inxmail.com 36

Dep
rec

ate
d

3. API Description

RecipientContext rc = session.createRecipientContext();
RecipientMetaData rmd = rc.getMetaData();
Attribute sortAttr = rmd.getEmailAttribute();

String filter = "email LIKE \"%yourcompany.com\"";
RecipientRowSet rrs = rc.select(filter, sortAttr,

Order.ASC);

Since version 1.10.0 of the Inxmail Professional API, there is an easier way to accomplish this task.
If you wish to retrieve a recipient with a specific key (e.g. the email address), you can use the
following snippet:

RecipientContext rc = session.createRecipientContext();
RecipientRowSet result = rc.findByKey("recipient.of@yourcompany.invalid");
result.next();

In some environments the recipient key may be ambiguous. To retrieve all recipients with the given
key, use the findAllByKey method instead. It is also possible to retrieve the recipients for a list of
keys. To accomplish this task, use the findByKeys or findAllByKeys method.

Following code demonstrates how to search a recipient with its identifier:

String filter = "RecipientId() = 1234";
RecipientRowSet rrs = rmd.select(filter, sortAttr,

Order.ASC);
rrs.next();

3.8.4. Controlling List Membership

List membership is controlled by a "subscription date" value, which exists for each standard mailing
list. To add a recipient to a list, update this value with a date. Remove a recipient by setting this
value to null:

RecipientContext rc = session.createRecipientContext();
RecipientMetaData rmd = rc.getMetaData();

ListContext lc = ...get list context...
RecipientRowSet rrs = ...find recipient...

// Add recipient to list:
rrs.updateDatetime(rmd.getSubscriptionAttribute(lc), new Date());

// Remove recipient from list:
rrs.updateDatetime(rmd.getSubscriptionAttribute(lc), null);

3.8.5. Deleting Recipients

Deleting a recipient from the system is done by calling deleteRow or deleteRows on the Recipien-
tRowSet:

RecipientRowSet rrs = ...find recipient...

// Delete current row:
rrs.deleteRow();

// Delete multiple recipients:
rrs.deleteRows(new IndexSelection(0,10));

Developer Guide | www.inxmail.com 37

Dep
rec

ate
d

3. API Description

3.8.6. Updating Recipients

There are two ways to update values of a recipient. If there is only one recipient to be changed, the
following sample code demonstrates updating a single recipient.

Note: For changing the hardbounce attribute the api user needs the recipient changing right.

RecipientRowSet rrs = ...find recipient...

// Update value:
rrs.updateBoolean(metadata.getUserAttribute("promotion"), true);
rrs.commitRowUpdate();

For more than a few recipients it is better to let the server do the work, as walk through the result
set and change every recipient. This is already faster than walking through the result set.

RecipientRowSet rrs = ...find recipients...

// Update all found recipients
rrs.setAttributeValue(metadata.getUserAttribute("promotion"), true);

3.8.7. Using alternative key instead of email address

In most use cases, the email address is used as key attribute for recipient management. However,
in some cases alternative key attributes are needed, e.g. an "account number".
Therefore, the Batch Channel offers the possibility to select text or integer values as key instead of
the email address. Of course, the email address remains unique if the "dublicates allowed" option
of Inxmail database is not set.
Following method creates a Batch Channel with an alternative key attribute to select the recipients.
Allowed data types of the key attribute are either Attribute.DATA_TYPE_STRING or
Attribute.DATA_TYPE_INTEGER. If the key attribute (e.g. due to manual data import), it will not be
determined which one of these will be selected by the Batch Channel methods.

public BatchChannel createBatchChannel(Attribute selectAttribute);

Example: Change email address of client with account number "206.914.112"

RecipientContext rc = session.createRecipientContext();
Attribute accountId = rc.getMetaData().

getUserAttribute("AccountID");
BatchChannel bc = rc.createBatchChannel(accountId);

// Select customer with Account−ID "206.914.112"

bc.selectRecipient("206.914.112");
bc.write(rc.getMetaData().getEmailAttribute(), "new@email.de");
int[] ret = bc.executeBatch();

3.8.8. Unsubscribed recipients

Since Inxmail Professional 3.8 unsubscribed recipients are shown in a special table. Since Inxmail
Professional API 1.6.0 these unsubscribed recipients can be accessed by the Inxmail Professional
API. The RecipientContext contains the following methods to retrieve a UnsubscriptionRecipien-
tRowSet which contains the unsubscribed recipients.

Developer Guide | www.inxmail.com 38

Dep
rec

ate
d

3. API Description

public UnsubscriptionRecipientRowSet selectUnsubscriber(ListContext list) throws SelectException;
public UnsubscriptionRecipientRowSet selectUnsubscriber(ListContext list, Attribute orderAttribute, int orderType)

throws SelectException;
public UnsubscriptionRecipientRowSet selectUnsubscriber(ListContext list, String additionalFilter)

throws SelectException;
public UnsubscriptionRecipientRowSet selectUnsubscriber(ListContext list, String additionalFilter, Attribute orderAttribute,

int orderType) throws SelectException;
public UnsubscriptionRecipientRowSet selectUnsubscriber(ListContext list, Filter filter) throws SelectException;
public UnsubscriptionRecipientRowSet selectUnsubscriber(ListContext list, Filter filter, Attribute orderAttribute,

int orderType) throws SelectException;
public UnsubscriptionRecipientRowSet selectUnsubscriber(ListContext list, Filter filter, String additionalFilter)

throws SelectException;
public UnsubscriptionRecipientRowSet selectUnsubscriber(ListContext list, Filter filter, String additionalFilter,

Attribute orderAttribute, int orderType) throws SelectException;

3.8.9. Personal Tracking

Each recipient has a tracking permission for each list. In order to interact with these permissions
using the RecipientRowSet or the BatchChannel, you first have to enable this feature by creating
an appropriate RecipientContext, as shown in the following example:

RecipientContext rc = session.createRecipientContext(true);

Once enabled, the tracking permission can be read through the getTrackingPermission method
and the state of the tracking permission can have one of the following values.

GRANTED - Indicates that the recipient permitted tracking for this list.

DENIED - Indicates that the recipient forbid tracking for this list. This is the default value.

The tracking permission can be written through the updateTrackingPermission method. The track-
ing permission cannot be deleted but its state can be reset to DENIED. The state must not be null.

Note: The tracking permission must not be written for a list a recipient is not subscribed to. An
IllegalValueException will be thrown.

Note: If a tracking permission for a list is written in the same request when a recipient is removed
from this list, the tracking permission will be ignored.

Note: When subscribing a recipient to a list a tracking permission can be written in the same
request.

RecipientRowSet rrs = ...find recipient...
ListContext lc = ...find list...

// Read tracking permission:
TrackingPermissionState tps = rrs.getTrackingPermission(lc);

// Set tracking permission:
rrs.updateTrackingPermission(lc, TrackingPermissionState.GRANTED);
rrs.commitRowUpdate();

Another way to read and write the tracking permission state is using the getInteger and updateInteger

methods in combination with the getTrackingPermissionAttribute method. The mapping from
integer values to tracking permission states are as follows:

GRANTED - 1

DENIED - 0

Developer Guide | www.inxmail.com 39

Dep
rec

ate
d

3. API Description

RecipientContext rc = session.createRecipientContext();
RecipientRowSet rrs = ...find recipient...
ListContext lc = ...find list...

// Get tracking permission attribute:
Attribute permissionAttribute = rc.getMetaData().getTrackingPermissionAttribute(lc);

// Read tracking permission:
Integer tps = rrs.getInteger(permissionAttribute);

// Set tracking permission:
rrs.updateInteger(permissionAttribute, 1);
rrs.commitRowUpdate();

Note: If the tracking permission of a recipient should be updated, these requests are reordered
within a single commitRowUpdate to make sure updates to the tracking permission are executed
last. This helps to ensure updates to the tracking permission do not get lost when a subscribe
command to the same list is contained in the same commitRowUpdate. Be aware that only
the RecipientRowSet does such a reordering. Using the BatchChannel there is no reordering
whatsoever.

3.9. AttributeManager

Using the AttributeManager, attributes (columns) can be manipulated. Following example illustrates
how to create a new text attribute with length of 50 characters:

session.getAttributeManager().create(
"Firstname", Attribute.DATA_TYPE_STRING, 50);

Renaming attributes is performed using the rename method, removing by calling remove in the
AttributeManager.
The following example shows how to check the visibility of a few attributes. If the last modification
attribute is not visible in the list, it will be made visible. The opposite is true for the subscription
attribute. If the lastname attribute is not visible, it will be made visible in all lists:

RecipientContext rc = session.createRecipientContext();
RecipientMetaData rmd = rc.getMetaData();
Attribute lastModification = rmd.getLastModificationAttribute();
Attribute subscription = rmd.getSubscriptionAttribute(lc);
Attribute lastname = rmd.getUserAttribute("Lastname");
List<Attribute> attributes = Arrays.asList(lastModification, subscription, lastname);

AttributeManager am = session.getAttributeManager();
Map<Attribute, Boolean> visibility = am.areAttributesVisibleInList(attributes, lc.getId());

if(!visibility.get(lastModification))
am.setAttributeListVisibility(lastModification, lc.getId(), true);

if(visibility.get(subscription))
am.setAttributeListVisibility(subscription, lc.getId(), false);

if(!visibility.get(lastname))
am.setGlobalAttributeVisibility(lastname, true);

3.10. ApproverManager

The ApproverManager is used for selecting/removing/creating approvers in Inxmail Professional.
The following sample creates a new approver.

Developer Guide | www.inxmail.com 40

Dep
rec

ate
d

3. API Description

ListContext lc = ...;
ApproverManager apm = session.getApproverManager();
Approver newApr = apm.createApprover();
newApr.updateComment("API created approver");
newApr.updateEmail("approver@inv.invalid");
newApr.updateLists(new int[] { lc.getId() });
newApr.updateName("Approver 1");
newApr.commitUpdate();

3.11. Features

Agents, like "Mailing" or "Subscriptions" are called "Features" in the API language. Which features
are available can be optained from the Features interface.
Features are enabled and disabled from the ListContext, as following example demonstrates, which
enables the "Subscriptions" agent in the chosen mailing list:

ListContext lc = ...get list context...
lc.enableFeature(Features.SUBSCRIPTION_FEATURE_ID);

Not every feature is accessible for every type of list. For example, "Subscription" feature is available
in standard lists, only. The "Mailing" feature can be used in standard and filter lists. If a feature is
not available for a list, an FeatureNotAvailableException will be thrown.
Features are controlled by their respective managers. As such, there is a "MailingManager" and a
"SubscriptionManager".

3.11.1. SubscriptionManager

If the subscription feature is enabled for a standard list, the SubscriptionManager can be used to
subscribe and unsubscribe recipients. The behaviour is the same as if a recipient subscribes to a
list via a web frontent. For example, if double opt in is configured, calling subscribe will start the
normal double opt in subscription process. Since Inxmail Professional API 1.14.1 it is possible to
set the tracking permission of a subscriber. The tracking permission indicates whether collecting
data of the subscriber is allowed or forbidden.

SubscriptionManager sm = session.getSubscriptionManager();
Map attributes = new HashMap();
attributes.put("Firstname", "Max");
attributes.put("Lastname", "Mustermann");
int ret = sm.processSubscription("Sourceidentifier", "127.0.0.1",

lc, "max.mustermann@inxmail.de", attributes,
TrackingPermissionState.GRANTED);

The result is either PROCESS_ACTIVATION_SUCCESSFULLY if the subscription or unsubscripton suc-
ceeded, or PROCESS_ACTIVATION_FAILED_ADDRESS_ILLEGAL if the address is not conform to the
RFC standard.
Also can be the SubscriptionManager used for retrieving the subscription log entries. The following
methods can be used for getting the subscription log entries. Each methods returns an rowset which
contains the entries.

Developer Guide | www.inxmail.com 41

Dep
rec

ate
d

3. API Description

public SubscriptionLogEntryRowSet getAllLogEntries(RecipientContext rc,
Attribute[] attrs);

public SubscriptionLogEntryRowSet getLogEntriesForList(ListContext lc,
RecipientContext rc, Attribute[] attrs);

public SubscriptionLogEntryRowSet getLogEntriesBeforeAndList(ListContext lc,
Date before, RecipientContext rc, Attribute[] attrs);

public SubscriptionLogEntryRowSet getLogEntriesAfterAndList(ListContext lc,
Date after, RecipientContext rc, Attribute[] attrs);

public SubscriptionLogEntryRowSet getLogEntriesBetweenAndList(ListContext lc,
Date start, Date end, RecipientContext rc, Attribute[] attrs);

public SubscriptionLogEntryRowSet getLogEntriesBefore(Date before,
RecipientContext rc, Attribute[] attrs);

public SubscriptionLogEntryRowSet getLogEntriesAfter(Date after,
RecipientContext rc, Attribute[] attrs);

public SubscriptionLogEntryRowSet getLogEntriesBetween(Date start,
Date end, RecipientContext rc, Attribute[] attrs);

The example shows how to get all existing subscription log entries.

SubscriptionManager sm = s.getSubscriptionManager();
RecipientContext rc = s.createRecipientContext();
RecipientMetaData rmd = rc.getMetaData();
Attribute intAttr = rmd.getUserAttribute("countSendedMailings");
SubscriptionLogEntryRowSet rowset = sm.getAllLogEntries(rc, new Attribute[] { intAttr });
while(rowset.next())
{

System.err.print(rowset.getDatetime() + " " + rowset.getEmailAddress() + " "
+ rowset.getRecipientId() + " " + rowset.getListId() + " "
+ rowset.getLogMessage() + " " + rowset.getSendingId() + " ");

if(rowset.getRecipientState() == SubscriptionLogEntryRowSet.RECIPIENT_STATE_EXISTENT)
System.err.println(rowset.getInteger(intAttr));

else
System.err.println("Recipient does not exists");

}
rowset.close();

3.11.2. MailingManager

The MailingManager controls all aspects concerned with mailings. To use the MailingManager for
a mailing list, the MAILING_FEATURE has to be activated for this list.
Some of the methods exposed by MailingManager anticipate methods in future versions of Inxmail.
Methods which have currently no function are:

public Mailing requestApproval()

Create and Edit Mailings

MailingManager mailingMgr = session.getMailingManager();
Mailing mailing = mailingMgr.createMailing(listContext);
mailing.updateSubject("Monthly Newsletter");
mailing.updateName("Monthly Newsletter");
mailing.commitUpdate();

For existing mailings, always call lock before updating it, and unlock after committing changes!
Content is put into mailings using content handlers. There are a number of such handlers:

PlainTextContentHandler - Handles plain text content.

HtmlTextContentHandler - Handles HTML-only content.

Developer Guide | www.inxmail.com 42

Dep
rec

ate
d

3. API Description

MultiPartContentHandler - Handles multipart content (HTML plus plain text), or mailings where
their content is selected depending on the recipient profile.

XsltMultiPartContentHandler - Handles multipart content defined by XML/XSLT, or mailings
whose content is selected depending on the recipient profile.

XsltPlainTextContentHandler - Handles plain text content defined by XML/XSLT.

XsltHtmlTextContentHandler - Handles HTML text content defined by XML/XSLT.

All of these handlers expose methods to enter the content. For example, editing a plain text mail:

mailing.setContentHandler(PlainTextContentHandler.class);
PlainTextContentHandler ch =

(PlainTextContentHandler)m.getContentHandler();

ch.updateContent("...any mailing content...");

Retrieval of Mailings

public BOResultSet select(ListContext listContext, int stateFilter);
public BOResultSet select(ListContext listContext, int stateFilter,

int orderAttribute, int orderType);
public BOResultSet select(ListContext listContext, int stateFilter,

String filter, int orderAttribute, int orderType);

Existing Mailings can be retrieved with the select methods listed above. The BOResultSets contain
Mailing objects. The various options define the selection and ordering criteria.

listContext - The mailing list to get mailings from. It is currently not possible to get mailings from
multiple lists in one selection.

stateFilter - Select mailings by their state. MailingManager.STATE_FILTER_ALL matches mail-
ings in any state. Use Mailing.STATE_* as single values or in bitwise combinations to select
mailings by specific state(s).

orderAttribute - Specify the mailing attribute by which the result set is ordered. Use
Mailing.ATTRIBUTE_*. For technical reasons, not all attributes may be used for ordering. Cur-
rently Mailing.ATTRIBUTE_SUBJECT and Mailing.ATTRIBUTE_MODIFICATION_DATETIME are
possible.

orderType - Order direction. Use Order.ASC for ascending, Order.DESC for descending ordering.

filter - Free filter expression. See section below for syntax.

Filters are specified as text strings with the same syntax as Inxmail internal filters and conditions.
Mailing filters are restricted to attribute - value comparisons without AND and OR combinations. At-
tributes are specified with the Attribute(id) function, where id corresponds to the values for the
order attribute described above. A sample filter for all mailings last changed on or after Jan. 1st,
2006 is:

String filter = "Attribute(" +
Mailing.ATTRIBUTE_MODIFICATION_DATETIME +

") > #01.01.2006 00:00:00#";

Mailing.ATTRIBUTE_MODIFICATION_DATETIME is a timestamp attribute, therefore a date is not suffi-
cient, a time must also be specified. Operators and value formats are described in the Inxmail user
manual, chapter 23.

Developer Guide | www.inxmail.com 43

Dep
rec

ate
d

3. API Description

Approval and Controlling Send-Out

Since Inxmail Professional API 1.6.0 it is possible to use the approval of mailings. The following
methods are defined for requesting/deny/revoke approval.

public void approve(int approverId, String comment) throws MailingStateException, DataException, UpdateException;
public void denyApprove(int approverId, String comment) throws MailingStateException, DataException,

UpdateException;
public void requestEscalationApproval(Date escalationDate, Date deadline, int[] approverIds, int[] recipientId,

boolean isTestRecipient, String locale) throws MailingStateException, DataException, UpdateException;
public void requestIdenticalApproval(Date deadline, int[] approverIds, int[] recipientId, boolean isTestRecipient,

String locale) throws MailingStateException, DataException, UpdateException;
public void revokeApproval() throws MailingStateException, DataException;
public void revokeApproval(String comment) throws MailingStateException, DataException, UpdateException;

The methods approve() and requestApproval() are deprecated and should never used. Please
use the methods above.
Following methods can be used to send mailings:

public void sendTestMail(String testAddress, int recipientId)
throws SendException, MailingStateException, DataException;

public void sendSingleMail(int recipientId)
throws SendException, MailingStateException, DataException;

public void startSending()
throws MailingStateException, DataException;

public void stopSending()
throws MailingStateException, DataException;

To schedule a mailing, update the schedule time. This example schedules the mailing one hour in
the future:

mailing.scheduleMailing(new Date(
new Date().getTime() + 60*60*1000));

To revoke the scheduling:

mailing.unscheduleMailing();

Mail Preview

Please note that starting with Inxmail Professional API version 1.11.10, the MailingRenderer is
deprecated and is replaced by the GeneralMailingRenderer. For more information see chapter
GeneralMailingManager.

Sending info

With the sending info you are able to get information about the sending of the mailing such as
number of recipients or average mail size. For getting the sending info object call getSendingInfo()
from the Mailing object.

public interface SendingInfo
{

public int getDeliveredMailsCount();
public int getSentErrorCount();
public int getBounceCount();
public int getNotSentMailsCount();
public double getAverageMailSize();

}

Developer Guide | www.inxmail.com 44

Dep
rec

ate
d

3. API Description

Starting with Inxmail Professional API version 1.11.4 you can also use the SendingHistoryManager

to access more detailled sending information. As a shortcut, you may also use the findSendings

and findLastSending methods.

3.11.3. TriggerMailingManager

The TriggerMailingManager and the TriggerMailing business object cover all aspects of the
trigger mailing lifecycle. Trigger mailings were introduced with Inxmail Professional 4.2 to satisfy
the need for event driven mailings. In general, trigger mailings won’t be sent to all recipients of the
associated list, but to a subset of the recipients, depending on the trigger conditions. The following
trigger mailing types - as defined by the TriggerType enumeration - are supported:

• ACTION_MAILING: This mailing type is triggered by an action.

• TIME_TRIGGER_INTERVAL_MAILING: A mailing of this type is sent to all recipients of the associ-
ated list at a freely definable interval (i.e. hourly, daily, weekly,...). The interval is described by a
TriggerInterval object. The interval trigger is a time trigger which is not related to a specific
attribute.

• TIME_TRIGGER_BIRTHDAY_MAILING: A mailing of this type is sent to recipients on the annual
recurrence of a specific date. A datetime attribute of the recipient acts as a baseline and the
mailing is sent every year after this baseline. An offset can be specified to send the mailing
some time before or after the annual recurrence. The condition is checked once a day. The
birthday trigger is an attribute driven time trigger.

• TIME_TRIGGER_ANNIVERSARY_MAILING: A mailing of this type is sent to recipients on the recur-
rence of a specific date. A datetime attribute of the recipient acts as baseline and the mailing
is sent after a user defined period of time (years, months or days) after this baseline. An offset
can be specified to send the mailing some time before or after the recurrence. The condition is
checked once a day. The anniversary trigger is an attribute driven time trigger.

• TIME_TRIGGER_REMINDER_MAILING: A mailing of this type is sent to recipients on a specific date.
A datetime attribute of the recipient defines that date. An offset can be specified to send the
mailing some time before the date. The condition is checked once a day. The reminder trigger
is an attribute driven time trigger.

• TIME_TRIGGER_FOLLOW_UP_MAILING: A mailing of this type is sent to recipients on a specific date.
A datetime attribute of the recipient defines that date. An offset can be specified to send the
mailing some time after the date. The condition is checked once a day. The follow up trigger is
an attribute driven time trigger.

These basic trigger types can be used to create a wide variety of different event driven mailings.
The following subsections discuss the different aspects of the trigger mailing lifecycle and how to
handle them using the Inxmail Professional API.

Note: The TriggerMailingManager and the MailingManager seem to be pretty similar (and in
fact are to some degree) however, they are NOT interoperable.

Creation and editing

The heart of a trigger mailing is the TriggerDescriptor which defines the trigger type and the
various settings. Depending on the trigger type the mailing is either sent out by an action (action
driven), on a regular basis (interval driven) or according to the value of a date attribtue (attribute
driven). Interval and attribute driven triggers are also referred to as time triggers. See above for a
list of the available trigger types.
It is rarely advisable to create a TriggerDescriptor directly as the state space is complex and can
be confusing. Generally, it’s reasonable to use a TriggerDescriptorBuilder for this task which will

Developer Guide | www.inxmail.com 45

Dep
rec

ate
d

3. API Description

guide you through the process of creating a TriggerDescriptor and complain about any missing
settings and broken invariants. To obtain a builder appropriate for the desired trigger type, use the
TriggerDescriptorBuilderFactory.

The following snippet exemplary shows how to create an action trigger, an interval trigger and an
anniversary trigger. Be aware that in this case the most complex configuration is used. Some of the
settings are optional, as documented by each builder, but this example illustrates all the capabilities
of trigger mailings:

// obtain builder factory
TriggerDescriptorBuilderFactory factory = session.getTriggerMailingManager()

.getTriggerDescriptorBuilderFactory();

// retrieve attributes for time triggers
RecipientMetaData rmd = session.createRecipientContext().getMetaData();
int birthdayId = rmd.getUserAttribute("Birthday").getId();
int counterId = rmd.getUserAttribute("Counter").getId();

// create end date for time triggers
Calendar end = Calendar.getInstance();
end.add(Calendar.YEAR, 1);
Date endDate = end.getTime();

// create sending time for time triggers
Calendar time = Calendar.getInstance();
time.set(Calendar.HOUR, 12);
time.set(Calendar.MINUTE, 30);
Date sendingTime = time.getTime();

// create commands for time triggers
CommandFactory cmdFactory = session.getActionManager().getCommandFactory();
SetValueCommand cmd = cmdFactory.createSetRelativeValueCmd(counterId, "1");
List<SetValueCommand> commands = Arrays.asList(cmd);

// create action trigger
TriggerDescriptor actionDescriptor = factory.createActionTriggerDescriptorBuilder().build();

// create interval trigger
TriggerIntervalBuilderFactory intFactory = session.getTriggerMailingManager()

.getTriggerIntervalBuilderFactory();
TriggerInterval interval = intFactory.getWeeklyIntervalBuilder().intervalCount(2).dispatchIntervals(

EnumSet.of(TimeTriggerDispatchInterval.MONDAY, TimeTriggerDispatchInterval.FRIDAY)).build();

TriggerDescriptor intervalDescriptor = factory.createIntervalTriggerDescriptorBuilder().startDate(
new Date()).sendingTime(sendingTime).endDate(endDate).interval(interval)
.attributeValueSetters(commands).build();

// create anniversary trigger
TimeTriggerOffset modificator = new TimeTriggerOffset(TimeTriggerOffsetType.WAS_AGO, TimeTriggerUnit.YEAR,

50);
TimeTriggerOffset offset = new TimeTriggerOffset(TimeTriggerOffsetType.IS_IN, TimeTriggerUnit.DAY, 1);

TriggerDescriptor descriptor = factory.createAnniversaryTriggerDescriptorBuilder().startDate(new Date())
.sendingTime(sendingTime).endDate(endDate).attribute(birthdayId).columnModificator(

modificator).offset(offset).attributeValueSetters(commands).build();

The action trigger is the easiest to configure. The reason for this is simple: There is no configura-
tion. The sending process is controlled by an action, or more specifically, an action can use and
send this mailing.

The interval trigger is one of the most complex trigger types, particularly because of the need
to build the interval. The trigger in the example will send the mailing every other week on Monday
and Friday and will increase the Counter attribute by one. It will be active for one year from now on.

Developer Guide | www.inxmail.com 46

Dep
rec

ate
d

3. API Description

The anniversary trigger is probably the most complex attribute driven trigger type, as it offers the
most settings. The trigger in the example will send the mailing to recipients who celebrate their 50th
birthday the next day. It will also increase the Counter attribute by one and will be active for one
year from now on.

Apart from the TriggerDescriptor the creation of a trigger mailing works pretty much the same
way as that of a normal mailing. The following snippet shows how to create a trigger mailing that
will be sent to recipients who have been a member of the associated list for one year:

int optInDate = session.createRecipientContext().getMetaData().getSubscriptionAttribute(listContext)
.getId();

Date startDate = new Date();

Calendar time = Calendar.getInstance();
time.set(Calendar.HOUR, 12);
time.set(Calendar.MINUTE, 30);
Date sendingTime = time.getTime();

TriggerMailingManager triggerMailingMgr = session.getTriggerMailingManager();
TriggerDescriptor descriptor = triggerMailingMgr.getTriggerDescriptorBuilderFactory()

.createAnniversaryTriggerDescriptorBuilder().startDate(startDate).sendingTime(sendingTime)

.attribute(optInDate).columnModificator(
new TimeTriggerOffset(TimeTriggerOffsetType.WAS_AGO, TimeTriggerUnit.YEAR, 1)).build();

TriggerMailing mailing = triggerMailingMgr.createTriggerMailing(listContext, descriptor);
mailing.updateName("One year anniversary");
mailing.updateSubject("Thank's for staying with us!");
mailing.commitUpdate();

As mentioned before, action mailings work slightly different. Instead of configuring the sending
process inside the TriggerDescriptor it is entirely controlled by an action. In order to use an
action mailing you will have to add a SendActionMailCommand to an action. The following snippet
shows how to create an action mailing and an action which sends the mailing:

// create action mailing
TriggerMailingManager tmm = session.getTriggerMailingManager();
TriggerDescriptor descriptor = tmm.getTriggerDescriptorBuilderFactory()

.createActionTriggerDescriptorBuilder().build();
TriggerMailing mailing = tmm.createTriggerMailing(lc, descriptor);
mailing.updateName("Snippet Action Mailing");
mailing.updateSubject("Snippet Action Mailing");
mailing.commitUpdate();

// action mailing must be approved
mailing.approveImmediately("The mailing is approved.");

// create action
ActionManager am = session.getActionManager();
Action action = am.createAction(lc);
action.updateEventType(Action.EVENT_TYPE_SUBSCRIBE);
action.updateName("Snippet Action");

// create command
CommandFactory cf = am.getCommandFactory();
Command[] cmds = new Command[1];
cmds[0] = cf.createSendActionMailCmd(lc.getId(), mailing.getId());
action.updateCommands(cmds);
action.commitUpdate();

For existing trigger mailings, always call lock before updating it, and unlock after committing
changes! Content is put into trigger mailings using content handlers. There are a number of such
handlers:

PlainTextContentHandler - Handles plain text content.

Developer Guide | www.inxmail.com 47

Dep
rec

ate
d

3. API Description

HtmlTextContentHandler - Handles HTML-only content.

MultiPartContentHandler - Handles multipart content (HTML plus plain text), or mailings whose
content is selected depending on the recipient profile.

XsltMultiPartContentHandler - Handles multipart content defined by XML/XSLT, or mailings
whose content is selected depending on the recipient profile.

XsltPlainTextContentHandler - Handles plain text content defined by XML/XSLT.

XsltHtmlTextContentHandler - Handles HTML text content defined by XML/XSLT.

All of these handlers offer methods to update content. The following snippet exemplary shows how
to edit a plain text trigger mail:

mailing.setContentHandler(PlainTextContentHandler.class);
PlainTextContentHandler ch =

(PlainTextContentHandler)m.getContentHandler();

ch.updateContent("...any mailing content...");

Retrieval

The TriggerMailingManager offers several methods to retrieve trigger mailings. Most of them are
used to retrieve a set of trigger mailings matching a specific condition. Given the ID of the mailing is
known, the get method can be used to retrieve a single trigger mailing. Here is a list of the available
methods:

public BusinessObject get(int id);
public BOResultSet selectAll();
public BOResultSet selectByState(ListContext listContext, StateFilter stateFilter);
public BOResultSet selectByState(ListContext listContext, StateFilter stateFilter,

TriggerMailingAttribute orderAttribute, int orderType);
public BOResultSet selectByState(ListContext listContext, StateFilter stateFilter, String filter,

TriggerMailingAttribute orderAttribute, int orderType);

Existing trigger mailings can be retrieved with the select methods listed above. The BOResultSets
contain TriggerMailing objects. Options define the selection and ordering criteria:

listContext - The mailing list to retrieve trigger mailings from. It is currently not possible to
retrieve trigger mailings from multiple lists in one selection.

stateFilter - Selects trigger mailings by their mailing and/or trigger state.

orderAttribute - Specifies the trigger mailing attribute by which the result set is ordered. Use
TriggerMailingAttribute.*. For technical reasons, not all attributes may be used for order-
ing. Currently, the following attributes may be used:

• SUBJECT

• NAME

• SINGLE_SEND_COUNT

• ACTIVATION_DATETIME

• MODIFICATION_DATETIME

orderType - Order direction. Use Order.ASC for ascending and Order.DESC for descending order-
ing.

filter - Free filter expression.

Developer Guide | www.inxmail.com 48

Dep
rec

ate
d

3. API Description

Using a StateFilter trigger mailings can be retrieved according to their state. A trigger mailing
has two types of states: the mailing state and the trigger state. The mailing state reflects the state
of the mailing, pretty much like the state of a normal mailing. The possible values are defined by
the TriggerMailingState enumeration. The trigger state, on the other hand, reflects the state of
the trigger which can be active or inactive. The possible values are defined by the TriggerState

enumeration.

A StateFilter consists of a combination of both filter types. A trigger mailing must match at least
one of the specified mailing types and the trigger type. However, it is possible to create state filters
that match any mailing and/or trigger state. A state filter that matches any mailing and trigger state
is referred to as ’all matching state filter’ which can be obtained from the manager as Singleton.
The following methods can be used to create a StateFilter:

public StateFilter createMailingStateFilter(Set<TriggerMailingState> stateFilter);
public StateFilter createTriggerStateFilter(TriggerState stateFilter);
public StateFilter createStateFilter(Set<TriggerMailingState> mailingStateFilter, TriggerState triggerStateFilter);
public StateFilter createAllMatchingStateFilter();

Using the appropriate method, it is easy to create a StateFilter which matches a set of mailing
states and/or trigger state or to retrieve all trigger mailings of a list, disregarding their state using the
all matching state filter. For an example of how to create a StateFilter, see the retrieval snippet
at the end of this section.

Free filter expressions are specified as text strings with the same syntax as Inxmail internal fil-
ters and conditions. Trigger mailing filters are restricted to attribute - value comparisons with-
out AND and OR combinations (only a single attribute may be matched). Attributes are specified
with the Attribute(id) function, where id corresponds to the id of any attribute defined in the
TriggerMailingAttribute enumeration. An examplary filter expression is shown in the retrieval
snippet at the end of this section. The available operators and value formats of filter expressions
are described in the Inxmail user manual, chapter 23.

The following snippet shows how to retrieve all trigger mailings of the specified list which are in
the DRAFT or APPROVAL_REQUESTED state and have been edited during the last hour. The snippet
prints out the mailing name in ascending alphabetical order.

TriggerMailingManager triggerMailingMgr = session.getTriggerMailingManager();

Date oneHourAgo = new Date(new Date().getTime() − 60 * 60 * 1000);
String filterDate = new SimpleDateFormat("dd.MM.yyyy HH:mm:ss").format(oneHourAgo);
String filter = "Attribute(" + TriggerMailingAttribute.MODIFICATION_DATETIME.getId() + ") > #" + filterDate

+ "#";

Set<TriggerMailingState> mailingStateFilter = EnumSet.of(TriggerMailingState.DRAFT,
TriggerMailingState.APPROVAL_REQUESTED);

StateFilter stateFilter = triggerMailingMgr.createMailingStateFilter(mailingStateFilter);

BOResultSet set = triggerMailingMgr.selectByState(listContext, stateFilter, filter,
TriggerMailingAttribute.NAME, Order.ASC);

for(int i = 0; i < set.size(); i++)
{

TriggerMailing tm = (TriggerMailing)set.get(i);
System.out.println(tm.getName());

}

set.close();

Developer Guide | www.inxmail.com 49

Dep
rec

ate
d

3. API Description

Approval and controlling send-out

The approval process of trigger mailings is almost identical to that of regular mailings with two
exceptions: the deprecated methods were removed and a new method for the immediate approval
of trigger mailings was added. The following methods are available to manage the approval process:

public void approveImmediately(String comment);
public void approve(int approverId, String comment);
public void denyApprove(int approverId, String comment);
public void requestEscalationApproval(Date escalationDate, Date deadline, int[] approverIds, int[] recipientIds,

boolean isTestRecipient, String locale);
public void requestIdenticalApproval(Date deadline, int[] approverIds, int[] recipientIds,

boolean isTestRecipient, String locale);
public void revokeApproval();
public void revokeApproval(String comment);

The normal approval workflow requires an approval request in which the user decides whether the
approval is granted or denied. There are two different types of approval requests: escalating and
identical.

The escalating approval process involves only the primary approver at first. Only if the primary
approver does not respond to the request by a given escalation date, the secondary approver will
get involved. The identical approval process involves both approvers immediately and requires both
to grant the approval.

Revoking the approval is possible during the request or after the approval. It is also possible to
bypass the normal approval process by approving the trigger mailing immediately. Be aware that
this requires the corresponding right.

The following snippet shows how to implement the normal approval workflow:

Calendar cal = Calendar.getInstance();
cal.add(Calendar.DAY_OF_MONTH, 7);
Date escalationDate = cal.getTime();

cal.add(Calendar.DAY_OF_MONTH, 14);
Date deadline = cal.getTime();

int[] approverIds = new int[] { primaryId, secondaryId };
int[] recipientIds = new int[] { recipientId };

mailing.requestEscalationApproval(escalationDate, deadline, approverIds, recipientIds, false, "en");
mailing.approve(primaryId, "Looks good!");

Sending trigger mailings differs gravely from sending normal mailings. While normal mailings are
sent only once to every recipient of the associated list, trigger mailings are sent to a subset of these
recipients on a regular basis, depending on the trigger. This is the reason why it is not possible
(and makes no sense) to schedule trigger mailings or start sending them manually. Instead, a
trigger mailing is activated or deactivated using the following methods:

public void activateSending();
public void deactivateSending(boolean stopActiveSending);

Mail preview

Please note that starting with Inxmail Professional API version 1.11.10, the TriggerMailing-

Renderer is deprecated and is replaced by the GeneralMailingRenderer. For more information
see chapter GeneralMailingManager.

Developer Guide | www.inxmail.com 50

Dep
rec

ate
d

3. API Description

Sending info

To retrieve the date of the next sending interval, use the getNextSending() method.

Starting with Inxmail Professional API version 1.11.4 you can also use the SendingHistoryManager

to access more detailled sending information. As a shortcut, you may also use the findSendings

and findLastSending methods.

3.11.4. GeneralMailingManager

Introduced in the Inxmail Professional API version 1.11.10, the GeneralMailingManager provides
read-only access to most of the mailing types supported by Inxmail Professional. In contrast to the
other mailing managers, the GeneralMailingManager employs a single interface.

The following mailing types are currently supported by the GeneralMailingManager:

• Regular mailings

• Action mailings

• Time trigger mailings (like birthday mailing and interval mailing)

• Subscription trigger mailings

• Split test mailings

• Sequence mailings

This is helpful especially if you want to aggregate data from various mailings of different types. With-
out the GeneralMailingManager you would have to use several mailing managers and aggregate
the data they produce. Also, the GeneralMailingManager for the first time offers access to split test
mailings, sequence mailings and subscription trigger mailings.

Retrieval of GeneralMailings

The GeneralMailingManager offers the following retrieval methods:

public GeneralMailing get(long id);
public ROBOResultSet<GeneralMailing> selectAll();
public GeneralMailingQuery createQuery();

Aside from the usual retrieval methods provided by all ROBOManagers, there is a wide range of crite-
ria which can be freely combined using the GeneralMailingQuery to find GeneralMailings.

The GeneralMailingQuery implements a fluent interface for creating and executing queries. The
basic idea is to simply create a query object and combine the available filters as you need them
instead of figuring out which method offers the appropriate set of filters. This allows you to create
complex queries, while the fluent interface keeps the syntax as concise as possible, thus producing
more readable and maintainable code.

The following criteria are supported by GeneralMailingQuery:

• The mailing type

• The ID of the list containing the mailing

• The mailing ID

• The mailing name

Developer Guide | www.inxmail.com 51

Dep
rec

ate
d

3. API Description

• The mailing subject

• The creation date of the mailing

• The last modification date of the mailing

Each of these criteria can be specified as a variadic list of values. A mailing matches the query if:

1. All criteria are met (AND concatenated)

2. For each of the criteria at least one value matches (OR concatenated)

Furthermore, it is possible to sort the output of the query in either ascending or descending order
by one of the following attributes:

• The mailing ID

• The mailing type

• The ID of the list containing the mailing

• The mailing name

• The mailing subject

• The creation date of the mailing

• The last modification date of the mailing

The following snippet demonstrates a very simple, yet quite effective query which retrieves all mail-
ings with the specified IDs:

GeneralMailingManager gmm = session.getGeneralMailingManager();
GeneralMailingQuery query = gmm.createQuery();

long[] ids = new long[] { 1, 2, 3 };

try (ROBOResultSet<GeneralMailing> result = query.mailingIds(ids).executeQuery())
{

for(GeneralMailing mailing : result)
{

System.out.println(mailing.getName());
}

}

Please note that this snippet takes advantage of the try-with-resources statement which was intro-
duced with Java 7. If you are using an older version of Java you have to replace this statement with
the traditional try-finally idiom for closing resources.

Of course you can also create much more complex queries, like the one presented in the following
snippet:

Developer Guide | www.inxmail.com 52

Dep
rec

ate
d

3. API Description

GeneralMailingManager gmm = session.getGeneralMailingManager();
GeneralMailingQuery query = gmm.createQuery();

query.mailingTypes(MailingType.REGULAR_MAILING, MailingType.TIME_TRIGGER_MAILING).listIds(3, 5, 7)
.names("Spring Campaign", "Autumn Campaign").subjects("Good news", "Bad news").sort(
GeneralMailingAttribute.LIST_ID, Order.ASC);

try (ROBOResultSet<GeneralMailing> result = query.executeQuery())
{

for(GeneralMailing mailing : result)
{

System.out.println(mailing.getListContextId() + ": " + mailing.getName() + " / "
+ mailing.getSubject());

}
}

This query retrieves all mailings which:

1. Are either regular mailings or time trigger mailings and

2. Reside in list 3 or 5 or 7 and

3. Whose name is either "Spring Campaign" or "Autumn Campaign" and

4. Whose subject is either "Good news" or "Bad news"

The result is ordered by the ID of the lists containing the mailings in ascending order.

The GeneralMailing BusinessObject

The GeneralMailing business object provides some basic data for a mailing:

• The mailing ID

• The mailing name

• The mailing subject

• The ID of the list containing the mailing

• The mailing type

• The creation date of the mailing

• The last modification date of the mailing

• All sendings of the mailing

• The last sending of the mailing

Rendering & Preview

To render a mailing or create a preview of it, use the GeneralMailingRenderer. As of Inxmail
Professional API version 1.11.10, the GeneralMailingRenderer replaces the renderers formerly
used for mailings and trigger mailings. It can be used to render mailings of the following types:

• Regular mailings

• Action mailings

• Time trigger mailings

• Subscription trigger mailings

Developer Guide | www.inxmail.com 53

Dep
rec

ate
d

3. API Description

• Split test mailings

• Sequence mailings

Terminology note: In the context of this guide, the term rendering refers to the process of pro-
ducing the actual HTML and plain text parts of a mailing. This process consists of the following
steps:

1. Parsing the Inxmail Professional specific mailing code

2. Performing certain transformations

3. Personalizing the content for a specific recipient

4. Producing the HTML and plain text parts as they would be present in a sent mailing

To render a mailing, you need to acquire an instance of GeneralMailingRenderer from the General-

MailingManager. The rendering is a two-stage process. First, you need to parse a mailing in a
specific build mode. Afterwards, you need to build it for a specific recipient. The following snippet
demonstrates this process:

try(GeneralMailingRenderer renderer = session.getGeneralMailingManager().createRenderer())
{

renderer.parse(mailingId, BuildMode.ALTERNATIVEVIEW_ACTIVE);
Content content = renderer.build(recipientId);

}

Please note that this snippet takes advantage of the try-with-resources statement which was intro-
duced with Java 7. If you are using an older version of Java you have to replace this statement with
the traditional try-finally idiom for closing resources.

As briefly mentioned above, you need to specify a build mode during the parse stage of the render-
ing process. The available build modes are specified in the BuildMode enumeration:

• NORMAL - Mode for generating a normal mailing, ready to be sent.

• ALTERNATIVEVIEW_ACTIVE - Mode for alternative view. All links are fully functional. Embedded
images are replaced with http references to image resources on the Inxmail server.

• ALTERNATIVEVIEW_INACTIVE - Mode for alternative view. Standard links are fully functional,
tracking links are functional but will not trigger any event or generate any click. Embedded
images are replaced with http references to image resources on the Inxmail server.

• PREVIEW - Mode for mail preview. Standard links are fully functional, tracking links are functional
but will not trigger any event or generate any click, unsubscription links will redirect but not
unsubscribe anybody. Embedded images are replaced with http references to image resources
on the Inxmail server. The function InInboxView() will return true while building the mailing.

• ARCHIVE - Mode for archive view. Standard links are fully functional, tracking links are functional
but will not trigger any event or generate any click, unsubscription links will redirect but not
unsubscribe anybody. Embedded images are replaced with http references to image resources
on the Inxmail server. The function InInboxView() will return true while building the mailing.

• ALTERNATIVEVIEW_ACTIVE_SIMPLE_LINKS - Mode for alternative view. All links are fully func-
tional but converted to simple links. Embedded images are replaced with http references to
image resources on the Inxmail server.

• NEWSLETTER_SIMPLE_LINKS - All links are fully functional but converted to simple links. Embed-
ded images are replaced with http references to image resources on the Inxmail server. The
function InInboxView() will return true while building the mailing.

Developer Guide | www.inxmail.com 54

Dep
rec

ate
d

3. API Description

The build method returns an instance of Content which contains all relevant data of the rendered
mailing:

• The content type (which is the MIME type)

• The rendered, personalized HTML text part, if any

• The rendered, personalized plain text part, if any

• The personalized subject

• The email address of the recipient

• The email address of the sender

• The reply-to address

• The bounce address

• The, possibly personalized, attachments

• The embedded images

• The header information

Attachments and embedded images are conveyed in an instance of class Attachment. This object
offers the following information:

• The file name or embedded image identifier

• The content type (which is the MIME type)

• The size in bytes

• An input stream which can be used to download the file

The following snippet demonstrates how to extract some key data of the content:

// Now the content can be accessed:
System.out.println("From: " + content.getSenderAddress());
System.out.println("To: " + content.getRecipientAddress());
System.out.println("Reply−To: " + content.getReplyToAddress());
System.out.println("Additional Headers: " + content.getHeader());
System.out.println("Content:\n" + content.getPlainText());

3.11.5. SplitTestManager and SplitTestMailingManager

Introduced in the Inxmail Professional API version 1.13.1, the SplitTestManager and
SplitTestMailingManager provide read-only access to SplitTest and SplitTestMailing objects.
This is helpful especially if you want to aggregate all split test mailings that refer to the same split
test.

Retrieval of SplitTests and SplitTestMailings

The SplitTestManager offers the usual retrieval methods provided by all BOManagers:

public SplitTest get(int id) throws DataException;
public BOResultSet<SplitTest> selectAll();

The same is true for the SplitTestMailingManager:

Developer Guide | www.inxmail.com 55

Dep
rec

ate
d

3. API Description

public SplitTestMailing get(int id) throws DataException;
public BOResultSet<SplitTestMailing> selectAll();

It is important to note that although SplitTestManager and SplitTestMailingManager inherit from
the BOManager class, all write access methods (remove, commitUpdate) are currently not supported
and throw a ’Not Implemented’ exception.

The SplitTest business object provides the following data:

• The split test ID

• The split test name

The SplitTestMailing business object provides nearly the same data for a split test mailing as the
according GeneralMailing Objects, with the exception of an additional SplitTest attribute:

• The mailing ID

• The mailing name

• The mailing subject

• The ID of the list containing the mailing

• The SplitTest the mailing belongs to

• The creation date of the mailing

• The last modification date of the mailing

• All sendings of the mailing

• The last sending of the mailing

While most of these methods return immediately, be aware that the getSplitTest method performs
an additional server call.

3.11.6. DesignCollectionManager

With this DesignCollectionMananger there is a direct Api access to
DesignCollections. You can import them and get access to the informations which collections are
available on the system. You can import itc files in a certain ListContext and get accesss to the
readonly interface of the DesignCollections.
This is achieved via a ResultSet which contains the desired DesignCollections. With the Informa-
tions gained by this methods you can generate new Mailings via the MailingManager.

Note: This is a readonly access!

This sample shows how to generate a mailing with a newly imported design collection:

Developer Guide | www.inxmail.com 56

Dep
rec

ate
d

3. API Description

Mailing m = s.getMailingManager().createMailing(lc);
m.setContentHandler(XsltMultiPartContentHandler.class);

DesignCollectionManager dc = s.getDesignCollectionManager();

ListContext cxt = s.getListContextManager().
findByName("Name of List");

InputStream stream = new FileInputStream(new File("test.itc"));

DesignCollection collection = dc.importDesignCollection(stream,
cxt);

Template[] templates = collection.getTemplates();

XsltMultiPartContentHandler ch = (XsltMultiPartContentHandler)
m.getContentHandler();

ch.updateStyle(templates[0].getHTMLStyles()[0]);

m.commitUpdate();

This sample shows how to list all available styles in all DesignCollection in a certain ListContext.

DesignCollectionManager dc = s.getDesignCollectionManager();
ListContext cxt = s.getListContextManager().

findByName("Name of List");
BOResultSet set = dc.select(cxt);
for(int i = 0; i<set.size(); i++)
{
DesignCollection col = set.get(i);
System.out.println(col.getVendor());
System.out.println(col.getVendorURL());
...
Template[] templates = col.getTemplates();
for(int j = 0; j<templates.length; j++)
{
Template template = templates[j];
System.out.println(template.getName());
System.out.println(template.getId());
Style[] htmlStyles = template.getHTMLStyles();
for (int k = 0; k<styles.length; k++)
{
System.out.println(htmlStyles[k].getTemplateID());
System.out.println(htmlStyles[k].getStyleName());

}
}

}

3.11.7. MailingTemplateManager

With this MailingTemplateManager there is a direct Api access to MailingTemplates. You can
create them and retrieve them via this Manager.
This sample shows how to generate a new MailingTemplate and updates the name of it.

MailingTemplateManager m = s.getMailingTemplateManager();
ListContext cxt = s.getListContextManager().

findByName("Name of List");
MailingTemplate html = m.createTemplate(cxt,

TextModule.MIME_TYPE_HTML_TEXT);

html.updateName("Desired name");

html.commitUpdate();

Developer Guide | www.inxmail.com 57

Dep
rec

ate
d

3. API Description

3.11.8. TextmoduleManager

With this TextmoduleManager there is a direct Api access to Textmodules. You can create them
and retrieve them via this Manager.
This sample shows how to generate a new Textmodule and updates the name of it.

TextmoduleManager m = s.getTextmoduleManager();
ListContext cxt = s.getListContextManager().

findByName("Name of List");
Textmodule html = m.createTextmodule(cxt,

TextModule.MIME_TYPE_HTML_TEXT);

html.updateName("Desired name");

html.commitUpdate();

3.11.9. TransformationManager

The TransformationManager provides access to the data source transformations used by the Inx-
mail Professional content agent.

A transformation is used to transform the data provided by a data source into HTML content that
can be embedded in a mailing. To achieve this, the transformation applies a previously defined XSL
transformation on the XML data provided by the data source. To embed the transformed content in
a mailing, use the content-include tag and provide the name of the data source as well as the name
of the transformation to be applied on the content.

The TransformationManager can be used to retrieve a single transformation by id or to retrieve all
registered transformations. You can also create your own transformation or edit an existing one.

Retrieval of transformations

The TransformationManager offers the usual retrieval methods provided by all BOManagers:

public Transformation get(int id) throws DataException;
public BOResultSet<Transformation> selectAll();

Creating transformations

To create a Transformation, you need to provide a name and the actual XSL transformation. The
following snippet demonstrates how to create a transformation:

String sampleXsl = "<pseudo xslt><transform><something>text text</something></transform></pseudo xslt>";

TransformationManager transformationManager = session.getTransformationManager();
Transformation transformation = transformationManager.createTransformation("Name Of XSLT Tranformation");
transformation.updateXslt(sampleXsl).commitUpdate();

Please note that for brevity this example does not use a valid XSL transformation. For more
information on XSLT, see the W3C recommendation. Also, be aware that the name has to be
unique. Attempting to create a transformation with the same name as an existing one will trigger an
UpdateException.

Editing transformations

The following snippet demonstrates how to assign a different XSLT to a Transformation:

Developer Guide | www.inxmail.com 58

Dep
rec

ate
d

http://www.w3.org/TR/xslt

3. API Description

String updateXsl = "<changed xslt><transform><something>text text</something></transform></changed xslt>";

TransformationManager transformationManager = session.getTransformationManager();
Transformation transformation = transformationManager.get(transformationId);
transformation.updateXslt(updateXsl).commitUpdate();

Please note that it is not possible to modify the name of a transformation after it was created. This
is due to the fact that transformations are referenced by name inside of mailings. Modifying the
name of a transformation that is already in use would break existing mailings.

3.11.10. DataAccess

With this DataAccess there is a direct Api access to read link or click data. There are two types
of objects to get the preferred data. One is the LinkData object. With this object there can be
searched for link data by recipient id, mailing id or link id. The other object is the ClickData. Which
is used for searching click data by recipient id, mailing id, both or link id. Both objects returning a
row set. With this row set it can be easily navigated through the result set.

LinkData

It is important to note that a link can be permanent or temporary. Temporary links are created each
time you create a preview of a mailing, either using the Inxmail Professional API, the Inxmail Pro-
fessional Client application or one of the mailing related JSPs (e.g. HTML mail or archive) shipped
with the software. These links do not trigger any events and are removed once the mailing is sent.

Permanent links on the other hand are created for each sending of a mailing. They do trigger
events and will not be deleted as long as the mailing that contains them exists. This implies that
permanent links actually are removed once the mailing that contains them is deleted.

You can decide whether you wish to retrieve all links (permanent and temporary) or if you prefer to
retrieve permanent links only. The following methods always retrieve all links:

• selectByMailing(int)

• selectByLink(int)

• selectByRecipient(int)

• selectByLinkName(String)

The following methods retrieve all links or permanent links only, depending on the permanentLinks-

Only boolean parameter:

• selectByMailing(int, boolean)

• selectByLinkName(String, boolean)

Please note, that there is no such method for retrieval by link and recipient. Retrieval by link makes
the parameter useless, as you already specify the specific link you are interested in. Retrieval by
recipient always returns permanent links only because temporary links do not generate any clicks
which would be necessary to establish the connection between link and recipient.

Below is a sample for getting all link data for a given recipient id.

DataAccess da = s.getDataAccess();
LinkData ld = da.getLinkData();
...
LinkDataRowSet rowSet = ld.selectByRecipient(id);

Developer Guide | www.inxmail.com 59

Dep
rec

ate
d

3. API Description

Fluent interface for links

In Inxmail Professional API 1.12.1, a new fluent interface for retrieving link data was introduced. The
basic idea is to simply create a query object and combine the available filters as you need instead
of figuring out which method offers the appropriate set of filters. This allows you to create complex
queries, while the fluent interface keeps the syntax as concise as possible, thus producing more
readable and maintainable code.

Using the new fluent query interface, you can filter the link data by link ID, link name, link type,
mailing ID and recipient ID. By default, a query will set a filter for permanent links only. It is possible
to override this filter in order to retrieve temporary links as well.

Be aware though, that you have to construct your queries careful with respect to the amount of
links fetched by the query. For more information on this topic and the limitations of the query inter-
face, see section Performance considerations.

The following sample demonstrates one of the simplest and most common link data queries: re-
trieving all temporary and permanent links of type unique count having the link name "New product"
or "Old product".

LinkDataQuery query = session.getDataAccess().getLinkDataWithNewLinkType().createQuery();
LinkDataRowSet set = query.permanentAndTemporaryLinks().linkTypes(LinkDataRowSet.LINK_TYPE_UNIQUE_COUNT

).linkNames("New product", "Old product").executeQuery();

Performance considerations
When using the new LinkDataQuery, you need to be aware of the fact that all these new filter pos-
sibilities and combinations come at a price: you need to be careful to make your filter conditions as
narrow as possible.

With the new fluent style API it is very easy to retrieve all links of the system at once. This is
not advisable, though, due to the sheer amount of links that could be present in the target system.
This large number of links produces two problems:

1. The ID of each and every link needs to be read from the database during the initial fetch which
in this case is a lot of data.

2. Because there are so many links involved, iterating over the LinkDataRowSet will naturally
take quite some time.

Huge numbers of links can cause memory problems
Issue number one is the more critical one because this huge amount of IDs needs to be stored
in-memory to support the necessary pagination of the LinkDataRowSet. If you have, say, one billion
links in your system and each ID takes up four bytes of memory, this would make a total of four
billion bytes which is roughly 3.8 gigabytes for the IDs only.

The number of links retrievable in one call is limited
You have a safety net though: the Inxmail Professional server will terminate any LinkDataQuery

request that produces an overall result size of over ten million links, by default. Any request with a
result size above this threshold will result in a server-side RuntimeException.

Use a smart synchronization strategy
On the other hand there are very rare occasions where you would actually need to fetch all of the
links at once. Most of the time you will probably be interested in all links associated to a mailing
or list. If you are intending to synchronize all links we strongly encourage you to use a pagination

Developer Guide | www.inxmail.com 60

Dep
rec

ate
d

3. API Description

mechanism which is only fetching the links which were changed since the last synchronization. In
order to do so, you will have to determine the changed mailings in the first place. Be careful to
keep the number of links fetched per request below a reasonable limit by applying appropriate filter
conditions.

Close your row sets
One final word regarding LinkDataRowSet: Be sure to close these resources once you have read
all of the links and try to avoid keeping multiple LinkDataRowSets alive simultaneously. The ID list
on the server is stored until you close either the row set or the session. If you do neither of these, it
will be discarded once the session is marked as inactive. Do not rely on this fact because the data
will accumulate pretty fast depending on the amount of data you are synchronizing.

ClickData

This sample shows how to get all click data for a given recipient id.

DataAccess da = s.getDataAccess();
ClickData cd = da.getClickData();
RecipientContext rc = s.createRecipientContext();
Attribute email = rc.getMetaData().getEmailAttribute();
...
ClickDataRowSet rowSet = cd.selectByRecipient(id, rc,

new Attribute[]{email});

Fluent interface for clicks

In Inxmail Professional API 1.11.4, a new fluent interface for retrieving click data was introduced.
The basic idea is to simply create a query object and combine the available filters as you need
instead of figuring out which method offers the appropriate set of filters. This allows you to create
complex queries, while the fluent interface keeps the syntax as concise as possible, thus producing
more readable and maintainable code.

Using the new fluent query interface, you can now filter the click data by link type, which for ex-
ample enables you to search for all clicks on unique count links. You can also retrieve all clicks
filtered only by date. Furthermore, it is now possible to filter by more than one mailing ID, link ID,
recipient ID and sending ID, thus giving you greater freedom to create even more complex queries.

Be aware though, that you have to construct your queries careful with respect to the amount of
clicks fetched by the query. For more information on this topic and the limitations of the query inter-
face, see section Performance considerations.

The following sample demonstrates one of the simplest and most common click data queries: re-
trieving all clicks which have been performed since yesterday. Note that the last two lines show the
actual query.

RecipientContext rc = session.createRecipientContext();
Attribute[] attrs = new Attribute[] { rc.getMetaData().getEmailAttribute() };

Calendar cal = Calendar.getInstance();
cal.add(Calendar.DAY_OF_YEAR, −1);
Date start = cal.getTime();

ClickDataQuery query = session.getDataAccess().getClickData().createQuery(rc, attrs);
ClickDataRowSet set = query.after(start).executeQuery();

To demonstrate the power and conciseness of the fluent query interface, the following sample shows
how to retrieve all clicks for a set of mailings, recipients and link types which were performed during

Developer Guide | www.inxmail.com 61

Dep
rec

ate
d

3. API Description

February 2013.

RecipientContext rc = session.createRecipientContext();
Attribute[] attrs = new Attribute[] { rc.getMetaData().getEmailAttribute() };

Calendar cal = Calendar.getInstance();
cal.set(Calendar.DAY_OF_MONTH, 1);
cal.set(Calendar.MONTH, Calendar.FEBRUARY);
cal.set(Calendar.YEAR, 2013);
cal.set(Calendar.HOUR_OF_DAY, 0);
cal.set(Calendar.MINUTE, 0);
cal.set(Calendar.SECOND, 0);
cal.set(Calendar.MILLISECOND, 0);
Date start = cal.getTime();

cal.set(Calendar.DAY_OF_MONTH, 28);
cal.set(Calendar.HOUR_OF_DAY, 23);
cal.set(Calendar.MINUTE, 59);
cal.set(Calendar.SECOND, 59);
cal.set(Calendar.MILLISECOND, 999);
Date end = cal.getTime();

int[] mailingIds = new int[] { 1234, 4711 };
int[] recipientIds = new int[] { 2, 3, 5, 7, 11, 13, 17 };
int[] linkTypes = new int[] { LinkDataRowSet.LINK_TYPE_UNIQUE_COUNT, LinkDataRowSet.

LINK_TYPE_OPENING_COUNT };

ClickDataQuery query = session.getDataAccess().getClickData().createQuery(rc, attrs);
ClickDataRowSet set = query.mailings(mailingIds).recipients(recipientIds).linkTypes(linkTypes).between(start,

end).executeQuery();

Performance considerations
When using the new ClickDataQuery, you need to be aware of the fact that all these new filter
possibilities and combinations come at a price: you need to be careful to make your filter conditions
as narrow as possible.

With the new fluent style API it is very easy to retrieve all clicks of the system at once. This is
not advisable, though, due to the sheer amount of clicks that could be present in the target system.
This large number of clicks produces two problems:

1. The ID of each and every click needs to be read from the database during the initial fetch
which in this case is a lot of data.

2. Because there are so many clicks involved, iterating over the ClickDataRowSet will naturally
take quite some time.

Huge numbers of clicks can cause memory problems
Issue number one is the more critical one because this huge amount of IDs needs to be stored
in-memory to support the necessary pagination of the ClickDataRowSet. If you have, say, a billion
clicks in your system and each ID takes up four bytes of memory, this would make a total of four
billion bytes which is roughly 3.8 gigabytes! Needless to say this is too much to keep in memory.

The number of clicks retrievable in one call is limited
You have a safety net though: the Inxmail Professional server will terminate any ClickDataQuery

request that produces an overall result size of over ten million clicks, by default. Any request with a
result size above this threshold will result in a server-side RuntimeException.

Use a smart synchronization strategy
On the other hand there are very rare occasions where you would actually need to fetch all of the

Developer Guide | www.inxmail.com 62

Dep
rec

ate
d

3. API Description

clicks at once. Most of the times you will probably be interested in all clicks associated to a mailing
or list. If you are intending to synchronize all clicks we strongly encourage you to use a pagination
mechanism which is only fetching the clicks which were performed since the last synchronization.
You still have to perform the initial synchronization of course. Be careful to keep the number of
clicks fetched per request below a reasonable limit by applying appropriate filter conditions.

Close your row sets
One final word regarding ClickDataRowSet: Be sure to close these resources once you have read
all of the clicks and try to avoid keeping multiple ClickDataRowSets alive simultaneously. The ID list
on the server is stored until you close either the row set or the session. If you do neither of these, it
will be discarded once the session is marked as inactive. Do not rely on this fact because the data
will accumulate pretty fast depending on the amount of data you are synchronizing.

3.11.11. SendingHistoryManager

The SendingHistoryManager and the Sending business object can be used to access data related
to the sending of mailings. The following questions - and more - can be answered by this manager:

• When and to which recipients was a mailing sent?

• Did the mailing bounce?

• Did the recipient react on the mailing (opening/click)?

• How large was the sending and the average mail size?

Terminology note: In this chapter, mailings as they appear in the Inxmail Professional client are
called "mailings", while the emails actually sent to recipients are called "mails".

The Sending business object represents the sending of a particular mailing to a set of recipients.
A sending is either triggered by an event (e.g. subscription, action, manual sending, etc.) or if
the scheduled sending date is reached. While regular mailings are usually only sent once, trigger
mailings may be sent an unlimited number of times.

Each sending consists of "individual sendings", one for each contacted recipient. These entries
are a kind of protocol for the sending. They keep track of the contacted recipients, their reaction on
the mail and the current status of the sending regarding this recipient.

To understand how these components work together it is helpful to understand how Inxmail Pro-
fessional sends mailings. After a sending is triggered, a sending object is created. This object
corresponds to the sending business object and keeps track of the state of the sending and -
through an additional server call - grants access to some accumulated statistics. The next step is
to personalize the mailing for each recipient who will be contacted. When the mailing is ready to be
sent, the start date of the sending is set and the actual sending process begins. For each recipient
of the sending an "individual sending" is created, keeping track of the state of the sending process
and the reaction of the recipient. After all mails have been sent, the end date of the sending is set.

There are a number of different criteria by which sending objects can be retrieved. Mainly these are
combinations of the mailing ID, the recipient ID and the date range. Additionaly, it is possible to find
modified sendings which at the same time enables the pagination of sending data. The following
events are considered as modifications:

• The sending was triggered (created)

• The sending was started

• The sending was finished

Developer Guide | www.inxmail.com 63

Dep
rec

ate
d

3. API Description

• A mail of the sending was sent to a recipient

• A recipient of the sending opened the mail

• A recipient of the sending clicked a link of the mail

• A recipient of the sending caused a bounce

• The mailing was deleted

• The sending protocol (individual sendings) was deleted

This list is not exhaustive.

The following methods can be used to retrieve sendings:

public ROBOResultSet<Sending> findSendingsByMailing(int mailingId);
public ROBOResultSet<Sending> findSendingsByRecipient(int recipientId);
public ROBOResultSet<Sending> findSendingsByDate(Date start, Date end);
public ROBOResultSet<Sending> findPastSendingsByMailing(int mailingId, Date start, Date end);
public ROBOResultSet<Sending> findPastSendingsByRecipient(int recipientId, Date start, Date end);
public ROBOResultSet<Sending> findModifiedSendings(Date since);
public Sending findLastSendingForMailing(int mailingId);
public Sending findLastSendingForRecipient(int recipientId);
public Sending findLastSending();

The following snippet demonstrates how to retrieve all sendings for a mailing which were processed
during the last 30 days:

Calendar cal = Calendar.getInstance();
cal.add(Calendar.DAY_OF_MONTH, −30);
Date start = cal.getTime();

SendingHistoryManager mgr = session.getSendingHistoryManager();
ROBOResultSet<Sending> sendings = mgr.findPastSendingsByMailing(mailingId, start, null);

Apart from retrieving sending business objects, the SendingHistoryManager may also be used to
retrieve the next expected sending dates. Be aware that it is not guaranteed that a sending will
be performed at the dates returned. If the sending process is triggered at a point of time when no
recipients match the criteria or there are no recipients at all, there will be no actual sending. Also
note, that theses dates do not specify the actual point in time at which the first mail is sent. As
mentioned before, the mailing has to be prepared (personalized) for each recipient before the first
mail is sent.

The following methods can be used to retrieve the expected future sending dates (of a mailing):

public Date findNextSending(int mailingId);
public List<Date> findFutureSendingsByMailing(int mailingId, Date start, Date end) throws NullPointerException;
public List<Date> findFutureSendingsByDate(Date start, Date end) throws NullPointerException;

In addition, the SendingHistoryManager allows simplified access to the reactions of single recipi-
ents. There are two kinds of these methods: Those which expect date parameters and those which
do not. The difference is the following: The methods without date parameters only take into account
the last sending of the mailing. The methods with date parameters take into account all sendings
which were performed during the given time span. Passing in null dates here takes every sending
of the mailing into account. Keep in mind that trigger mailings might be sent an arbitrary number of
times.

The following methods can be used to retrieve the reactions of single recipients:

Developer Guide | www.inxmail.com 64

Dep
rec

ate
d

3. API Description

hasOpened(int, int)
hasClicked(int, int)
hasBounced(int, int)
hasOpenedBetween(int, int, Date, Date)
hasClickedBetween(int, int, Date, Date)
hasBouncedBetween(int, int, Date, Date)

As mentioned before, the Sending business object keeps track of the status of the whole sending.
The following information can be retrieved:

• The ID of the sending

• The ID of the mailing to be sent

• The ID of the list containing the mailing to be sent

• The start date of the sending (after personalization)

• The end date of the sending

• The modification date of the sending

• The state of the sending

• The type of the mailing to be sent

• The total size of the sending in bytes (including all mails already sent)

• A boolean indicating whether the mailing was deleted

• A boolean indicating whether the protocol (individual sendings) was deleted

• The recipient reactions, including meta data if needed

• All clicks on links in the mailing of the sending

If the mailing associated with the sending still exists and is compatible with the GeneralMailing-

Manager you can also retrieve a read-only view of the mailing as demonstrated in the following
snippet:

Sending sending = session.getSendingHistoryManager().findLastSending();
GeneralMailing mailing = sending.findGeneralMailing();

if(mailing != null)
{

System.out.println(mailing.getListContextId() + ": " + mailing.getId() + " − " + mailing.getName()
+ " / " + mailing.getSubject());

}

In addition, the Sending business object grants access to some accumulated statistics through the
getReportData method which fetches a SendingReport object. Be aware that this method performs
an additional server call. The following information can be retrieved using the SendingReport object:

• The number of recipients who opened the mail

• The number of recipients who clicked a link of the mailing

• The number of mails sent, including bounces

• The number of mails sent, excluding bounces

• The number of recipients who caused a bounce

• The number of mails which have not yet been sent

Developer Guide | www.inxmail.com 65

Dep
rec

ate
d

3. API Description

• The average size of the mails

There are several ways of retrieving recipient reactions. The easiest approach is to fetch the data
as IndividualSendingRowSet. This row set contains the recipient ID, the state of the sending to
that recipient and boolean flags indicating whether the recipient opened the mail, clicked a link or
caused a bounce.

If you need to access recipient meta data - column data and state - use a SendingRecipientRowSet.
This row set includes all the information accessible through the IndividualSendingRowSet but also
allows to retrieve recipient meta data.

If you need to modify the recipients of the sending but you do not need to consider their reac-
tions, use a RecipientRowSet which is also available from the sending.

The following table depicts the functionality of the various methods:

Reaction (single) Reaction (bulk) Meta data Manipulation
hasOpened X - - -
hasClicked X - - -
hasBounced X - - -
findIndividualSendings - X - -
findClicks - X X -
findSendingRecipients - X X -
findRecipients - - X X

There is no direct way of accessing recipient reactions and at the same time manipulating recipient
data. To do this you need a two-stages approach:

1. Collect the relevant recipient IDs using findIndividualSendings()

2. Call RecipientContext.findByIds(int[]) to manipulate these recipients

The following example demonstrates how to determine all recipients who opened the sent mail and
set a date flag for these recipients:

Developer Guide | www.inxmail.com 66

Dep
rec

ate
d

3. API Description

SendingHistoryManager mgr = session.getSendingHistoryManager();
Sending lastSending = mgr.findLastSendingForMailing(mailingId);
IndividualSendingRowSet individualSendings = lastSending.findIndividualSendings();

List<Integer> idList = new ArrayList<Integer>();

while(individualSendings.next())
{

if(individualSendings.hasOpened())
{

idList.add(individualSendings.getRecipientId());
}

}

individualSendings.close();
int[] recipientIds = new int[idList.size()];

for(int i = 0; i < idList.size(); i++)
{

recipientIds[i] = idList.get(i);
}

RecipientContext recipientContext = session.createRecipientContext();
Attribute lastOpening = recipientContext.getMetaData().getUserAttribute("LastOpening");
RecipientRowSet recipients = recipientContext.findByIds(recipientIds);

Date now = new Date();

while(recipients.next())
{

recipients.updateDatetime(lastOpening, now);
recipients.commitRowUpdate();

}

recipients.close();

Performance Considerations

The sending data volume in Inxmail Professional can be rather huge. This is a factor you need
to consider when using the SendingHistoryManager. The large volume of data results from the
fact that for each sending there is a record for each and every recipient who was supposed to be
contacted, regardless of whether the mail could actually be delivered to that recipient or not.

Let’s say the system sends one mailing per day to a recipient base of one million recipients. Taking
into consideration that sending history data is usually stored for two years that makes 730 Sendings
to one million recipients. That would amount to a total of 730 million records!

Scanning this amount of data naturally takes some time. That is why the SendingHistoryManager

offers a layered approach to accessing the relevant data. The less data you need, the faster the
request will be.

The Sending BusinessObject
This implies that if you access more data you need to talk to the server more often. Because the
additional server calls are transparent, it is not obvious that some of the methods on the Sending

BusinessObject actually do perform one. Depending on the size of your Inxmail application the time
this call takes might be quite considerable. The following methods of the Sending object perform a
server call:

• getReportData

• hasOpened

Developer Guide | www.inxmail.com 67

Dep
rec

ate
d

3. API Description

• hasClicked

• hasBounced

• findIndividualSendings

• findSendingRecipients

• findClicks

• findRecipients

• findGeneralMailing

The time these server calls take varies greatly. The has* methods usually require just a few mil-
liseconds even on installations as big as 500 million records. On the other hand, getReportData
may take up to 10 seconds on such an installation. The find* methods might even take up to 15
seconds.

Regarding the find* methods there is also another aspect you need to take into consideration:
pagination. As an IndividualSendingRowSet might contain several million entries - keep in mind
there will be one entry per recipient - it is impossible to fetch all the data at once. This would simply
cause a timeout. As all row sets and result sets in the Inxmail Professional API, the row sets used
in the sending history fetch data in chunks:

• findIndividualSendings: 1000 entries at once, per default

• findSendingRecipients: 500 entries at once, per default

• findClicks: 500 entries at once, per default

• findRecipients: 50 entries at once, per default

• findGeneralMailing: 50 entries at once, per default

As stated earlier in this chapter, the IndividualSendingRowSet only contains sending states and
recipient reactions; no recipient metadata.

The SendingRecipientRowSet contains the same data plus any recipient attributes you specified.
Make sure to use as few attributes as possible, the less attributes you fetch, the less time this call
will require, including the calls performed during pagination of the row set.

Finally, the RecipientRowSet includes the complete recipient record. Depending on the Inxmail
application this might be several thousands of attributes. That is why the chunk size is so small for
RecipientRowSets.

As you can see, the more data a method fetches, the smaller the chunk size gets, which is quite
natural.

The SendingHistoryManager
Most of the methods in the SendingHistoryManager are quite fast, even in large installations of
Inxmail Professional. The following methods usually return in a matter of milliseconds, again de-
pending on the scale of the target system:

• get

• selectAll()

• findSendingsByMailing

• findSendingsByRecipient

Developer Guide | www.inxmail.com 68

Dep
rec

ate
d

3. API Description

• findSendingsByDate

• findPastSendingsByMailing

• findPastSendingsByRecipient

• findModifiedSendings

• findLastSendingForMailing

• findLastSendingForRecipient

• findLastSending

• hasOpened

• hasOpenedBetween

• hasClicked

• hasClickedBetween

• hasBounced

• hasBouncedBetween

• findNextSending

There are two methods, however, which may take considerably more time:

• findFutureSendingsByMailing

• findFutureSendingsByDate

The performance of these two strongly correlates with the date range you specify. Small ranges
will perform quite well. If you use ranges of up to, say, one year, that will take a significant amount
of time; given you have some trigger mailings which are triggered on a regular basis. The same is
true for sequence mailings.

If you can settle for the findFutureSendingsByMailing method instead of the findFutureSendings-

ByDate method, this is definitely something to consider because findFutureSendingsByDate has
to check each and every scheduled mailing, trigger mailing, sequence mailing and split-test mailing.
Depending on the size of the installation this might be quite a lot. Restraining this request to a single
mailing in a preferably narrow time span will significantly increase the performance.

3.11.12. ActionManager

The action manager can be used to search, create and modify actions. Creating actions is done
using the createAction method. But before new actions can be commited, the action type has to
be set which specified the event which triggers the action.
Following action types do not need a list context to be specified, since they are system wide:

• EVENT_TYPE_CLICK - A link in an email is clicked.

• EVENT_TYPE_HARD_BOUNCE - Hard bounce mail received.

• EVENT_TYPE_SOFT_BOUNCE - Soft bounce mail received.

• EVENT_TYPE_UNKNOWN_BOUNCE - Unknown mail detected through the bounce mailbox.

• EVENT_TYPE_AUTO_RESPONDER_BOUNCE - Auto-responder mail received through the bounce mail-
box.

Developer Guide | www.inxmail.com 69

Dep
rec

ate
d

3. API Description

• EVENT_TYPE_AUTO_RESPONDER_REPLY - Auto-responder mail received through the normal mail-
box.

• EVENT_TYPE_FLAME_REPLY - Flame mail received through the normal mailbox.

• EVENT_TYPE_FLAME_REPLY - Unknown mail detected through the bounce mailbox.

Following event types need a list context (StandardListContext or
FilterListContext) specified:

• EVENT_TYPE_NEWSLETTER_SENT - A newsletter was sent.

• EVENT_TYPE_SINGLE_MAIL_SENT - A single mail was sent.

• EVENT_TYPE_SUBSCRIBE - A recipient was successfully subscribed.

• EVENT_TYPE_UNSUBSCRIBE - A recipient was successfully unsubscribed.

• EVENT_TYPE_TRACKING_PERMISSION_GRANTED - A recipient granted tracking permission.

• EVENT_TYPE_TRACKING_PERMISSION_DENIED - A recipient revoked tracking permission.

If an action is triggered, it executes predefined commands. These commands are build by a
CommandFactory, which is returned from the getCommandFactory method of the ActionManager.
These factory methods are available:

createDeleteRecipientCmd();
createSetValueCmd(int attributeId, String expression);
createSetAbsoluteValueCmd(int attributeId, String absoluteValue);
createSetRelativeValueCmd(int attributeId, String relativeValue);
createSubscriptionCmd(int listContextId,

boolean processingEnabled);
createUnsubscriptionCmd(int listContextId,

boolean processingEnabled);
createUnsubscribeAllCmd();
createSendLastNewsletterCmd(int listContextId);
createSendMailCmd(int listContextId, int mailingId);
createSendActionMailCmd(int listContextId, int actionMailingId);
createGrantTrackingPermissionCmd(int listContextId);
createRevokeTrackingPermissionCmd(int listContextId);
createTransferTrackingPermissionCmd(int targetListId, Integer sourceListId);
createTransferTrackingPermissionCmd(int targetListId);

Creating an Action

Following example creates a new "On Click" action, which sets the current date into the profile
attribute lastClickAttr, and increments an integer counter in the attribute clickCountAttr.
The executeAlways flag in the action class controls, whether an action is executed even when
there is no tracking permission. If the flag is set to false, the action is executed only, if a tracking
permission of the recipient exists. If the flag is true, the action is executed always.

Developer Guide | www.inxmail.com 70

Dep
rec

ate
d

3. API Description

ListContextManager lm = session.getListContextManager();
ListContext lc = (ListContext)lm.findByName(

SystemListContext.NAME);
ActionManager actionMgr = session.getActionManager();

Action a = actionMgr.createAction(lc);
a.updateEventType(Action.EVENT_TYPE_CLICK);
a.updateName("Click−Registry");

CommandFactory factory = actionMgr.getCommandFactory();
Command[] cmds = new Command[2];
cmds[0] = factory.createSetValueCmd(lastClickAttr, "=Date()");
cmds[1] = factory.createSetRelativeValueCmd(clickCountAttr, "1");

a.updateCommands(cmds);
a.commitUpdate();

3.11.13. BlacklistManager

Blacklist rules, managed by the Blacklist Manager, block email addresses matched by these rules
from Inxmail. These addresses can not find their way into Inxmail, neither by import nor by sub-
scription or in other ways.
You activate the blacklist feature on the SystemListContext:

ListContextManager lm = session.getListContextManager();
SystemListContext context = (SystemListContext)lm.findByName(

SystemListContext.NAME);
context.enableFeature(Features.BLACKLIST_FEATURE_ID);

In the blacklist, you can lock out individual addresses or whole complete address ranges. Examples:

• name@firm.com - The address ‘name@firma.com’ is blocked

• *firm.com - All personnel of this firm is locked out

• *.tv - No addresses from Tavaluga

• spam* - All addresses beginning with ‘spam’ are blocked

• martin@* - All Martins are blocked

public BlacklistEntry createBlacklistEntry();
public BlacklistEntry findByPattern(String pattern);
public BOResultSet selectAll(int orderAttribute, int orderType);

Adding new Rules

To add new rules, create a blacklist entry and update its pattern.

BlacklistManager blMgr = session.getBlacklistManager();
BlacklistEntry blEntry = blMgr.createBlacklistEntry();
blEntry.updatePattern("*@spamcop.com");
blEntry.updateDescription("No addresses from SpamCop");
blEntry.commitUpdate();

// Now, all SpamCop addresses have been removed.

System.out.println("Deleted: " + blEntry.getHitCount());

Developer Guide | www.inxmail.com 71

Dep
rec

ate
d

3. API Description

Searching entries

Since Inxmail Professional 3.7 you can search for blacklist entries. You can use the following meth-
ods to search in the blacklist. For example you can search for all modified or created entries
between to dates.

Note: Only changes in the description or pattern updates the modification date of the blacklist
entry.

public BOResultSet selectAfter(Date searchDate);
public BOResultSet selectBefore(Date searchDate);
public BOResultSet selectBetween(Date startDate, Date stopDate);

The following example shows the retrieving of blacklist entries for 24 hours.

BlacklistManager blm = s.getBlacklistManager();
BOResultSet rs = blm.selectBetween(new Date(108, 0, 1, 0, 0, 0),

new Date(108, 0, 2, 0, 0, 0));
for(int i = 0; i < rs.size(); i++)
{
...
}
rs.close();

3.11.14. Managing Resources

Attachments used in mailings are "resources". Using the ResourceManager, these resources can
be upload to and download from the Inxmail server. Resources can be bound to mailing lists or
mailings, which means they are not visible outside these bounds, and will be removed with their
mailing list or mailing.

ResourceManager mgr = session.getResourceManager();
InputStream in = new FileInputStream("/images/logo.gif");
Resource res = mgr.upload("logo.gif", in);

Inxmail assigns to the so uploaded resource a unique identifier. To attach a resource to a mailing,
add the attach tag to the mail body:

StringBuffer sb = new StringBuffer("[%attach(")
.append(res.getId())
.append("); ");
.append(res.getName())
.append("]");

This results in a string like [%attach(42); logo.gif]. To locate existing resources, use the select

methods of the ResourceManager.

3.11.15. BounceManager

Since Inxmail Professional 3.7 it is possible to activate VERP (Variable envelope return path) in
the mailserver settings. With activated VERP, all bounce objects containing a mailing id, list id and
recipient id, if they are available. Also you can retrieve the bounce mailing as input stream. With the
Inxmail API 1.4.3 we introduce a bounce handling for managing the bounces over the Inxmail API.
This makes it easy to synchronise the bounces to a third party system.

Note:

• Every result set can include bounces which occurred while testing the mailing (sending to
test recipients).

Developer Guide | www.inxmail.com 72

Dep
rec

ate
d

3. API Description

• The bounce count in the sending info can be different from the size of the result set. Because
bounces can be deleted.

The BounceManager contains the methods for retrieving bounce objects.

public interface BounceManager extends BOManager<Bounce>
{

public BOResultSet<Bounce> selectBefore(Date searchDate);
public BOResultSet<Bounce> selectBefore(Date searchDate, RecipientContext rc, Attribute[] attrs);
public BOResultSet<Bounce> selectAfter(Date searchDate);
public BOResultSet<Bounce> selectAfter(Date searchDate, RecipientContext rc, Attribute[] attrs);
public BOResultSet<Bounce> selectBetween(Date startDate, Date stopDate);
public BOResultSet<Bounce> selectBetween(Date startDate, Date stopDate, RecipientContext rc, Attribute[] attrs);
public BOResultSet<Bounce> selectByMailingId(int mailingId);
public BOResultSet<Bounce> selectByMailingId(int mailingId, RecipientContext rc, Attribute[] attrs);
public BOResultSet<Bounce> selectByListId(int listId);
public BOResultSet<Bounce> selectByListId(int listId, RecipientContext rc, Attribute[] attrs);
public BOResultSet<Bounce> selectAll(RecipientContext rc, Attribute[] attrs);
public BounceQuery createQuery();
public BounceQuery createQuery(RecipientContext rc, Attribute[] attrs);

}

Following bounce categories are defined:

• CATEGORY_HARD_BOUNCE - Incoming mail is categorized as hard bounce.

• CATEGORY_SOFT_BOUNCE - Incoming mail is categorized as soft bounce.

• CATEGORY_AUTO_RESPONDER_BOUNCE - Incoming mail is categorized as auto responder bounce
(since Inxmail Professional API 1.12.1).

• CATEGORY_SPAM_BOUNCE - Incoming mail is categorized as spam bounce (since Inxmail Profes-
sional API 1.12.1).

• CATEGORY_UNKNOWN_BOUNCE - Incoming mail can not be categorized as one of the above cate-
gories.

The following sample shows the retrieval of bounces for a given mailing.

int mailingId = ...;
BounceManager bm = s.getBounceManager();
BOResultSet<Bounce> rs = bm.selectByMailingId(mailingId);
for(int i = 0; i < rs.size(); i++)
{
...
}
rs.close();

Fluent interface for bounce queries
In Inxmail Professional API 1.12.1, a new fluent interface for retrieving bounces was introduced.
The basic idea is to simply create a query object and combine the available filters as you need
instead of figuring out which method offers the appropriate set of filters. This allows you to create
complex queries, while the fluent interface keeps the syntax as concise as possible, thus producing
more readable and maintainable code.

Using the new fluent query interface, you can now filter the bounces by date, list, mailing and
bounce category combined in one query.

The following sample demonstrates a common bounce query: retrieving all bounces which were
received during the last 24 hours in a particular list. Note that the last two lines show the actual
query.

Developer Guide | www.inxmail.com 73

Dep
rec

ate
d

3. API Description

RecipientContext rc = session.createRecipientContext();
Attribute[] attrs = new Attribute[] { rc.getMetaData().getEmailAttribute() };

Calendar cal = Calendar.getInstance();
cal.add(Calendar.DAY_OF_YEAR, −1);
Date start = cal.getTime();

BounceQuery query = session.getBounceManager().createQuery(rc, attrs);
BOResultSet<Bounce> set = query.listIds(3).after(start).executeQuery();

3.11.16. InboxManager

Of course bounce notifications aren’t the only messages the Inxmail Professional server can handle.
The server will also manage responses sent by customers. Since version 1.9.0 of the Inxmail
Professional API it is possible to manage these inbox messages using the InboxManager. This
manager is organized pretty much the same way as the BounceManager, though the inbox message
object contains less information due to technical restrictions with email replies.

Note: It is generally possible to retrieve recipient attributes for the sender of an inbox message
if the sender is known to Inxmail Professional as a recipient. However, if the sender address is
unknown, the recipient status will be RECIPIENT_STATE_UNKNOWN and fetching recipient attributes
will raise an UnknownRecipientException.

The InboxManager defines the following methods:

public interface InboxManager extends BOManager
{

public BOResultSet selectBefore(Date searchDate, RecipientContext rc, Attribute[] attrs);
public BOResultSet selectAfter(Date searchDate, RecipientContext rc, Attribute[] attrs);
public BOResultSet selectBetween(Date startDate, Date stopDate, RecipientContext rc, Attribute[] attrs);
public BOResultSet selectAll(RecipientContext rc, Attribute[] attrs);

}

Following inbox message categories are defined:

• CATEGORY_AUTO_RESPONDER - Incoming mail is categorized as auto responder mail.

• CATEGORY_FLAME - Incoming mail is categorized as flame message with aggressive content
and/or strong language.

• CATEGORY_SPAM - Incoming mail is categorized as undesirable by spam/virus checking software.

• CATEGORY_UNCATEGORIZED - Incoming mail is an ordinary mail which does not match a specific
category.

• CATEGORY_UNKNOWN - The category of the incoming mail is unknown. This indicates a version
mismatch of server and API.

The following sample shows the retrieval of inbox messages which were received since yesterday:

Developer Guide | www.inxmail.com 74

Dep
rec

ate
d

3. API Description

Calendar cal = Calendar.getInstance();
cal.add(Calendar.DAY_OF_MONTH, −1);
Date yesterday = cal.getTime();

RecipientContext rc = session.createRecipientContext();
RecipientMetaData rmd = rc.getMetaData();
Attribute firstname = rmd.getUserAttribute("Firstname");
Attribute lastname = rmd.getUserAttribute("Lastname");

InboxManager im = session.getInboxManager();
BOResultSet rs = im.selectAfter(yesterday, rc, new Attribute[] { firstname, lastname });

for(int i = 0; i < rs.size(); i++)
{

InboxMessage message = (InboxMessage)rs.get(i);

System.out.println("Subject: " + message.getSubject());
System.out.println("Received at: " + message.getReceptionDate());

if(message.getRecipientState() == InboxMessage.RECIPIENT_STATE_EXISTENT)
{

System.out.println("Sent by: " + message.getString(firstname) + " "
+ message.getString(lastname));

}
else
{

System.out.println("Sent by: Unknown");
}

}

The code in the sample above prints out some basic information about the message: the subject,
the date of reception and the name of the sender. Note that the recipient attributes are only fetched
if the sender was recognized by Inxmail Professional and was not deleted.

3.11.17. Test profiles

Since Inxmail Professional 3.8 it is possible to create test recipients. With the Inxmail Professional
API 1.6.0 it is possible to access the test profiles from the API. Test recipients are similar to the
normal recipients, so the handling in the Inxmail Professional API is similar to the RecipientContext.
The following sample shows creating a new test recipient for a list.

ListContext lc = ...;
TestRecipientContext trc = session.createTestRecipientContext();
RecipientContext rc = session.createRecipientContext();
TestRecipientRowSet trs = trc.createRowSet(lc);
trs.moveToInsertRow();
trs.updateString(rc.getMetaData().getEmailAttribute(), "test@invalid.invalid");
trs.updateName("Test profile created by API");
trs.commitRowUpdate();
trs.close();
rc.close();

Note: If an attribute of a test recipient is set to the empty string, starting with Inxmail Professional
4.6, the resulting value will be null instead of the empty string.

3.11.18. WebpageManager

Web pages are mainly used as landing pages for the subscription and unsubscription process,
though they can be used for many other purposes as well. Since version 1.9.0 of the Inxmail
Professional API it is possible to retrieve information about the configured web pages using the
WebpageManager.

Developer Guide | www.inxmail.com 75

Dep
rec

ate
d

3. API Description

The manager offers several select methods which can be used to search for specific web pages.
The most important filter is the web page type which can be JSP (dynamic) or HTML form (static).
Another filter is used to retrieve web pages by their sub type. The sub type is a string which is used
internally by the Inxmail Professional server to define the usage of the web page. For example,
subscription landing pages have the sub type ’subscription’.
The following example illustrates how to retrieve all subscription JSPs and print out their names and
URLs:

WebpageManager wm = session.getWebpageManager();
BOResultSet rs = wm.selectJspsBySubType("subscription");

for(int i = 0; i < rs.size(); i++)
{

Webpage jsp = (Webpage)rs.get(i);

System.out.println("Name: " + jsp.getName());
System.out.println("URL: " + jsp.getServerUrl());

}

3.11.19. Retrieving Reports

Reports need to be configured before they can be generated. This is done with the ReportRequest

object. The asynchronous report generation process state is controlled with a ReportTicket. For
each report to generate, such a ticket has to be acquired. As soon as the report has been gener-
ated, it can be downloaded with the DownloadableResult.
Following example creates a “System Domain Distribution”, showing not more than 20 domains and
outputting as HTML. All texts will be in German (de) language (for a list of available reports and their
parameters see appendix A.):

ReportRequest request = new ReportRequest("SystemDomainDistribution"
, ReportRequest.OUTPUT_FORMAT_HTML,"de",
TimeZone.getDefault().getID());

request.putParameter("limit", "20");

Using the request, the report generation can be requested. As soon as the report is available, the
report ticket will return a valid “downloadable result”:

ReportTicket t = session.getReportEngine().generate(request,
false);

DownloadableResult dr = t.fetchDownloadableResult();
while(dr == null)
{

// Waiting for the report to finish...
Thread.sleep(3000);
dr = t.fetchDownloadableResult();

}

download(dr.getInputStream(), file,
"zip".equals(r.getContentType()));

if(t != null)
t.close();

Generated reports are cached on the Inxmail server. The default time in cache is set to two hours.
If ignoreCache parameter of the report engine’s generate method is true, the server cache will be
ignored and reports always regenerated.
Following code handles the download of reports. Reports as HTML and CSV format will be trans-
ferred as ZIPped file, since they normally contain more than one file:

Developer Guide | www.inxmail.com 76

Dep
rec

ate
d

3. API Description

private void download(InputStream is, File file, boolean isZipped)
throws IOException, FileNotFoundException

{
byte[] buf = new byte[1024];
int len;
try
{

if(isZipped) // unzip
{

ZipInputStream zis = new ZipInputStream(is);
ZipEntry ze = zis.getNextEntry();
while(ze != null)
{

if(!ze.isDirectory())
{

File newfile = new File(file, ze.getName());
File parent = newfile.getParentFile();
if(!parent.exists())

parent.mkdirs();
FileOutputStream fos = new FileOutputStream(newfile);
while ((len = zis.read(buf)) != −1)
{

fos.write(buf, 0, len);
}
fos.close();
zis.closeEntry();
ze = zis.getNextEntry();

}
}
zis.close();

}
else
{

FileOutputStream os = new FileOutputStream(file);
while ((len = is.read(buf)) != −1)

os.write(buf, 0, len);
os.close();

}
}
finally
{

is.close();
}

}

3.11.20. TrackingPermissionManager

With the TrackingPermissionManager you can retrieve tracking permissions in a performant way
and update single tracking permissions.

Retrieval of TrackingPermissions

The TrackingPermissionManager offers the following retrieval methods:

public TrackingPermission get(long id);
public LongBOResultSet<TrackingPermission> selectAll();
public TrackingPermissionQuery createQuery();

Aside from the usual retrieval methods provided by all LongBOManagers, there is a wide range of cri-
teria which can be freely combined using the TrackingPermissionQuery to find TrackingPermissions.

The TrackingPermissionQuery implements a fluent interface for creating and executing queries.
The basic idea is to simply create a query object and combine the available filters as you need them

Developer Guide | www.inxmail.com 77

Dep
rec

ate
d

3. API Description

instead of figuring out which method offers the appropriate set of filters. This allows you to create
complex queries, while the fluent interface keeps the syntax as concise as possible, thus producing
more readable and maintainable code.

The following criteria are supported by TrackingPermissionQuery:

• The ID of the tracking permission

• The ID of the list for which to find the tracking permissions for

• The ID of the recipient whose tracking permission to find

Each of these criteria can be specified as a variadic list of values. A tracking permission matches
the query if:

1. All criteria are met (AND concatenated)

2. For each of the criteria at least one value matches (OR concatenated)

Furthermore, it is possible to sort the output of the query in either ascending or descending order
by one of the following attributes:

• The tracking permission ID

• The ID of the list for which to find the tracking permissions for

• The ID of the recipient whose tracking permissions to find

The following snippet demonstrates a very simple, yet quite effective query which retrieves all track-
ing permissions with the specified IDs:

TrackingPermissionManager tpm = session.getTrackingPermissionManager();
TrackingPermissionQuery query = tpm.createQuery();

long[] ids = new long[] { 1, 10, 8 };

try (LongBOResultSet<TrackingPermission> result = query.trackingPermissionIds(ids).executeQuery())
{

for(TrackingPermission permission : result)
{

System.out.println(permission.getRecipientId() + ", " + permission.getListId());
}

}

Please note that this snippet takes advantage of the try-with-resources statement which was intro-
duced with Java 7. If you are using an older version of Java you have to replace this statement with
the traditional try-finally idiom for closing resources.

Of course you can also create much more complex queries, like the one presented in the following
snippet:

Developer Guide | www.inxmail.com 78

Dep
rec

ate
d

3. API Description

TrackingPermissionManager tpm = session.getTrackingPermissionManager();
TrackingPermissionQuery query = tpm.createQuery();

query.listIds(2, 7)
.recipientIds(2, 8, 10, 22)
.sort(TrackingPermissionAttribute.RECIPIENT_ID, Order.ASC);

try (LongBOResultSet<TrackingPermission> result = query.executeQuery())
{

for(TrackingPermission permission : result)
{

System.out.println(permission.getRecipientId() + ", " + permission.getListId());
}

}

This query retrieves all tracking permissions which:

1. Are given by recipient 2 or 8 or 10 or 22 and

2. Are given for list 2 or 7

The result is ordered by the ID of the recipients containing the tracking permissions in ascending
order.

Grant and revoke TrackingPermissions

The TrackingPermissionManager offers the following methods to grant or revoke tracking permis-
sions:

public void grantTrackingPermission(int recipientId, int listId);
public void revokeTrackingPermission(int recipientId, int listId);

Each of the methods expect an ID for the recipient and an ID for the list for which to grant or revoke
the tracking permission.

3.11.21. Tracking permission log

The tracking permission log can be retrieved by using the TrackingPermissionLogQuery.
The TrackingPermissionLogQuery implements a fluent interface for creating and executing queries.
The basic idea is to simply create a query object and combine the available filters as you need them
instead of figuring out which method offers the appropriate set of filters. This allows you to create
complex queries, while the fluent interface keeps the syntax as concise as possible, thus producing
more readable and maintainable code.

The following criteria are supported by TrackingPermissionLogQuery:

• The ID of the list for which to find the tracking permissions log entries for

• The ID of the recipient whose tracking permission log entries to find

• A start and end date to define the period of time of the log entries

• The ID of a tracking permission log entry to find only newer log entries

Each of these criteria can be specified as a variadic list of values. A tracking permission log entry
matches the query if:

1. all criteria are met (AND concatenated).

2. for each of the criteria at least one value matches (OR concatenated).

Developer Guide | www.inxmail.com 79

Dep
rec

ate
d

3. API Description

Furthermore, it is possible to sort the output of the query in either ascending or descending order
by one of the following attributes:

• The tracking permission log entry ID

• The ID of the list for which to find the tracking permission log entries for

• The ID of the recipient whose tracking permissions log entries to find

• The timestamp of the log entries to find

The following sample demonstrates a tracking permission log query: retrieving all log entries which
have been added since yesterday.

TrackingPermissionManager tpm = session.getTrackingPermissionManager();

Calendar cal = Calendar.getInstance();
cal.add(Calendar.DAY_OF_YEAR, −1);
Date start = cal.getTime();

TrackingPermissionLogQuery logQuery = tpm.createLogQuery().after(start);
try (TrackingPermissionLogEntryRowSet row = logQuery.executeQuery())
{

//retrieve some information from the row set.
}

The following sample shows how to retrieve tracking permission log entries regarding one recipient
with the ID 5, lists with the IDs 10 and 12 and only those log entries whose ID is greater than 22.
The list of results is sorted by the list ID in descending order.

TrackingPermissionManager tpm = session.getTrackingPermissionManager();

TrackingPermissionLogQuery logQuery = tpm.createLogQuery()
.recipientIds(5)
.listIds(10, 12)
.afterId(22L)
.sort(TrackingPermissionLogAttribute.LIST_ID, Order.DESC);

try (TrackingPermissionLogEntryRowSet row = logQuery.executeQuery())
{

//retrieve some information from the row set.
}

Starting with Inxmail Professional API version 1.20.0 it is also possible to include recipient data in
the result of the query. The following snippet demonstrates how to retrieve all log entries along with
the email address, given name and family name of the recipient.

Developer Guide | www.inxmail.com 80

Dep
rec

ate
d

3. API Description

try (RecipientContext recipientContext = session.createRecipientContext())
{

Attribute email = recipientContext.getMetaData().getEmailAttribute();
Attribute givenName = recipientContext.getMetaData().getUserAttribute("givenName");
Attribute familyName = recipientContext.getMetaData().getUserAttribute("familyName");
Attribute[] attributes = new Attribute[] { email, givenName, familyName };

try (TrackingPermissionLogEntryRowSet logEntries = session.getTrackingPermissionManager()
.createLogQuery(recipientContext, attributes)
.executeQuery())

{
while(logEntries.next())
{

if(logEntries.getRecipientState() == RecipientState.EXISTENT)
{

System.out.println(
"recipient " + logEntries.getRecipientId() + " on list " + logEntries.getListId()

+ " has new permission " + logEntries.getNewState() + " # email="
+ logEntries.getString(email) + " ; givenName=" + logEntries.getString(
givenName) + " ; familyName=" + logEntries.getString(familyName));

}
else
{

System.out.println(
"recipient " + logEntries.getRecipientId() + " on list " + logEntries.getListId()

+ " has new permission " + logEntries.getNewState() + " # no recipient data");
}

}
}

}

Note: It is important only to fetch recipient data when the recipient state is EXISTENT. Accessing
recipient data when the recipient state is UNKNOWN or DELETED will raise a NullPointerException

.

Developer Guide | www.inxmail.com 81

Dep
rec

ate
d

A. Reports Reference

A.1. Catalogues

Catalogues are the first pages displayed in Inxmail Client’s the Report agent (“home”), presenting
a list of available reports. There are three of them, one for the system list, one for mailing lists, and
one for mailings.

Note: The reports are not part of the Inxmail API, they can change on every release of Inxmail
Professional!

Internal names:
List Reports - ListReportsCatalog
Mailing Reports - MailingReportsCatalog
General Reports - SystemReportsCatalog

A.2. Bounce Reports

A.2.1. Broken down by (top-level) domain

Internal name: BounceTypesByDomain, BounceTypesByToplevelDomain

Parameter Data type Description

begin long Start date of report
end long End date of report
count integer Number of days in the past from now
limit integer Number of rows in result

Internal name: BounceTypesByDomainByList, BounceTypesByToplevelDomainByList

Parameter Data type Description

listid integer List context identifier
begin long Start date of report
end long End date of report
count integer Number of days in the past from now
limit integer Number of rows in result

Developer Guide | www.inxmail.com 82

Dep
rec

ate
d

A. Reports Reference

Internal name: BounceTypesByDomainByMailing, BounceTypesByToplevelDomainByMailing

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
type integer Report mailing type
begin long Start date of report
end long End date of report
count integer Number of days in the past from now
limit integer Number of rows in result

A.2.2. Development over time

Internal name: IncomingMailDetails

Parameter Data type Description

begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

Internal name: IncomingMailDetailsByList

Parameter Data type Description

listid integer List context identifier
begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

Internal name: IncomingMailDetailsByMailing

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
type integer Report mailing type
begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

Developer Guide | www.inxmail.com 83

Dep
rec

ate
d

A. Reports Reference

A.2.3. Bounces and replies by Domain

Internal name: IncomingMailDetailsForDomain

Parameter Data type Description

begin long Start date of report
end long End date of report
count integer Number of days in the past from now
interval string Time interval type (hour,day,week,month)
domain string Domain name

A.2.4. Broken down by top 5 domains over time

Internal name: TimedIncomingMailByDomain

Parameter Data type Description

begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

Internal name: TimedIncomingMailByDomainByList

Parameter Data type Description

listid integer List context identifier
begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

Internal name: TimedIncomingMailByDomainByMailing

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
type integer Report mailing type
begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

Developer Guide | www.inxmail.com 84

Dep
rec

ate
d

A. Reports Reference

A.2.5. Broken down by top-level domains over time

Internal name: TimedIncomingMailByTopLevelDomain

Parameter Data type Description

begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

Internal name: TimedIncomingMailByTopLevelDomainByList

Parameter Data type Description

listid integer List context identifier
begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

Internal name: TimedIncomingMailByTopLevelDomainByMailing

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
type integer Report mailing type
begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

A.3. Mailing Reports

A.3.1. Clicks related to weekday and hour

Internal name: ClickOverviewTimeUnit

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier

Developer Guide | www.inxmail.com 85

Dep
rec

ate
d

A. Reports Reference

A.3.2. Clicks related to individual links

Internal name: ClickReactionLink

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier

A.3.3. Click development over time

Internal name: ClickReactionTimeResponse

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
interval string Time interval type (hour,day,week,month)
count integer Number of intervals since dispatch date

A.3.4. Most important key data of mailing

Internal name: MailingDetailOverview, SplitTestMailingDetailOverview

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier

Internal name: TriggerMailingDetailOverview, SubscriptionWelcomeMailingDetailOverview

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
type integer Report mailing type

A.3.5. Sendings overview

Internal name: TriggerMailingSendingsOverview

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
type integer Report mailing type
begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now

Developer Guide | www.inxmail.com 86

Dep
rec

ate
d

A. Reports Reference

Internal name: SubscriptionWelcomeSendings

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
type integer Report mailing type

A.3.6. Split test analysis

Internal name: SplitTestResult

Parameter Data type Description

listid integer List context identifier
splittestid integer Split test identifier

A.3.7. E-mail clients used

Internal name: UserAgent

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
filterid integer Targetgroup identifier
count integer Number of intervals in the past from now

A.4. Recipient Demographics

A.4.1. Analysis of recipient data

Internal name: SystemAttributeDistribution, AttributeDistribution

Parameter Data type Description

listid integer List context identifier (only AttributeDistribution)
limit integer Number of rows in result
attrid integer Attribute id

A.4.2. Domain distribution

Internal name: SystemDomainDistribution, DomainDistribution

Parameter Data type Description

listid integer List context identifier (only DomainDistribution)
limit integer Number of rows in result

Developer Guide | www.inxmail.com 87

Dep
rec

ate
d

A. Reports Reference

A.4.3. Top-level domain distribution

Internal name: SystemTopLevelDomainDistribution, TopLevelDomainDistribution

Parameter Data type Description

listid integer List context identifier (only TopLevelDistribution)
limit integer Number of rows in result

A.5. List Reports

A.5.1. Most important key data of a list

Internal name: ListOverview
Parameter Data type Description

listid integer List context identifier
begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

A.5.2. Send overview

Internal name: ListSentOverview, SystemSentOverview
Parameter Data type Description

listid integer List context identifier (only ListSentOverview)
begin long Start date of report
end long End date of report
count integer Number of days in the past from now

A.5.3. Mailings overview

Internal name: SystemMailingsOverview, ListMailingsOverview
Parameter Data type Description

listid integer List context identifier (only ListMailingsOverview)
begin long Start date of report
end long End date of report
count integer Number of days in the past from now
interval string Time interval type (hour,day,week,month)

Developer Guide | www.inxmail.com 88

Dep
rec

ate
d

A. Reports Reference

A.5.4. Analysis of transport frequency

Internal name: SendFrequency

Parameter Data type Description

listid integer List context identifier
begin long Start date of report
end long End date of report
count integer Number of days in the past from now

A.5.5. Evolution over time

Internal name: SubscriptionTimeResponse

Parameter Data type Description

listid integer List context identifier
begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

A.5.6. Related to weekday and daytime

Internal name: SubscriptionTimeUnit

Parameter Data type Description

listid integer List context identifier
begin long Start date of report
end long End date of report
count integer Number of days in the past from now

A.5.7. Comparison of mailings in current list

Internal name: CompareMailingDetailOverview

Parameter Data type Description

listid integer List context identifier
mailingids string List of mailing ids, Note: use # as separator!
interval string Time interval type (hour,day,week,month)
count integer Number of intervals in the past from noww

Developer Guide | www.inxmail.com 89

Dep
rec

ate
d

A. Reports Reference

A.5.8. Target group comparison of current mailing

Internal name: TargetGroupClickReport

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
selectedLinkIds string List of link ids, Note: use # as separator!
targetGroupIds string List of targetgroup ids, Note: use # as separator!
begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

A.5.9. E-mail clients used

Internal name: UserAgentByList

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
filterid integer Targetgroup identifier
count integer Number of intervals in the past from now

A.6. Administrative Reports

A.6.1. Mail server

Internal name: MailServer

Parameter Data type Description

begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

Developer Guide | www.inxmail.com 90

Dep
rec

ate
d

A. Reports Reference

A.6.2. Analysis of sending mail server (SMTP)/(POP3)

Internal name: MailServerDetail

Parameter Data type Description

begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)
server string Name of the mail server
type string Type of the mail server (pop3,smtp)

A.7. General Reports

A.7.1. Overview of the most important key data of all lists

Internal name: SystemOverview

Parameter Data type Description

begin long Start date of report
end long End date of report
count integer Number of intervals in the past from now
interval string Time interval type (hour,day,week,month)

A.7.2. E-mail volume

Internal name: SendRevenue

Parameter Data type Description

begin long Start date of report
end long End date of report

A.7.3. E-mail clients used

Internal name: UserAgentSystem

Parameter Data type Description

listid integer List context identifier
mailingid integer Mailing identifier
filterid integer Targetgroup identifier
count integer Number of intervals in the past from now

Developer Guide | www.inxmail.com 91

Dep
rec

ate
d

B. Support and Copyright

Inxmail is registered trademark of Inxmail GmbH, Freiburg.
If you have any problems please contact support@inxmail.com.

Acknowledgment This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

Developer Guide | www.inxmail.com 92

Dep
rec

ate
d

Imprint

Publisher: Inxmail GmbH
Address: Wentzingerstr. 17, 79106 Freiburg
Phone: +49 761 296979-0
Fax: +49 761 296979-9
Email: info@inxmail.com
Web: www.inxmail.com

Date: 4/2020
Author: Stefan Biermann, Christian Gerteis

Dep
rec

ate
d

	1 Change History
	1.1 Inxmail API 1.20.6
	1.2 Inxmail API 1.20.4
	1.3 Inxmail API 1.20.3
	1.4 Inxmail API 1.20.2
	1.5 Inxmail API 1.20.1
	1.6 Inxmail API 1.20.0
	1.7 Inxmail API 1.19.2
	1.8 Inxmail API 1.19.1
	1.9 Inxmail API 1.19.0
	1.10 Inxmail API 1.18.0
	1.11 Inxmail API 1.17.0
	1.12 Inxmail API 1.16.0
	1.13 Inxmail API 1.15.0
	1.14 Inxmail API 1.14.5
	1.15 Inxmail API 1.13.3
	1.16 Inxmail API 1.13.2
	1.17 Inxmail API 1.13.1
	1.18 Inxmail API 1.12.1
	1.19 Inxmail API 1.11.10
	1.20 Inxmail API 1.11.5
	1.21 Inxmail API 1.11.4 (Beta version)
	1.22 Inxmail API 1.10.1
	1.23 Inxmail API 1.10.0
	1.24 Inxmail API 1.9.0
	1.25 Inxmail API 1.8.0
	1.26 Inxmail API 1.7.2
	1.27 Inxmail API 1.7.1
	1.28 Inxmail API 1.7.0
	1.29 Inxmail API 1.6.2
	1.30 Inxmail API 1.6.1
	1.31 Inxmail API 1.6.0
	1.32 Inxmail API 1.5.0
	1.33 Inxmail API 1.4.4
	1.34 Inxmail API 1.4.3
	1.35 Inxmail API 1.4.2
	1.36 Inxmail API 1.4.1
	1.37 Inxmail API 1.4.0
	1.38 Inxmail API 1.2.0

	2 Introduction
	2.1 Security Issues
	2.2 System Requirements
	2.3 Inxmail API for Java
	2.3.1 Running the Samples
	2.3.2 Code Snippets

	3 API Description
	3.1 Sessions
	3.1.1 Login and Logout
	Anonymous Local Sessions
	Remote Named Sessions

	3.1.2 Using Proxy Servers

	3.2 Using the Hessian Protocol
	3.3 Getting the Inxmail Professional Server time
	3.4 Sending temporary Mails
	3.5 BusinessObjects and BOResultSets
	3.6 ListContext Management
	3.6.1 Creating, Searching and Naming Lists
	3.6.2 Size of Lists
	3.6.3 List properties

	3.7 Synchronizing tracking permissions
	3.7.1 RecipientRowSet
	3.7.2 BatchChannel
	3.7.3 SubscriptionManager
	3.7.4 TrackingPermissionManager

	3.8 RecipientContext
	3.8.1 Adding New Recipients
	3.8.2 BatchChannel
	3.8.3 Searching Recipients
	3.8.4 Controlling List Membership
	3.8.5 Deleting Recipients
	3.8.6 Updating Recipients
	3.8.7 Using alternative key instead of email address
	3.8.8 Unsubscribed recipients
	3.8.9 Personal Tracking

	3.9 AttributeManager
	3.10 ApproverManager
	3.11 Features
	3.11.1 SubscriptionManager
	3.11.2 MailingManager
	Create and Edit Mailings
	Retrieval of Mailings
	Approval and Controlling Send-Out
	Mail Preview
	Sending info

	3.11.3 TriggerMailingManager
	Creation and editing
	Retrieval
	Approval and controlling send-out
	Mail preview
	Sending info

	3.11.4 GeneralMailingManager
	Retrieval of GeneralMailings
	The GeneralMailing BusinessObject
	Rendering & Preview

	3.11.5 SplitTestManager and SplitTestMailingManager
	Retrieval of SplitTests and SplitTestMailings

	3.11.6 DesignCollectionManager
	3.11.7 MailingTemplateManager
	3.11.8 TextmoduleManager
	3.11.9 TransformationManager
	Retrieval of transformations
	Creating transformations
	Editing transformations

	3.11.10 DataAccess
	LinkData
	Fluent interface for links
	ClickData
	Fluent interface for clicks

	3.11.11 SendingHistoryManager
	Performance Considerations

	3.11.12 ActionManager
	Creating an Action

	3.11.13 BlacklistManager
	Adding new Rules
	Searching entries

	3.11.14 Managing Resources
	3.11.15 BounceManager
	3.11.16 InboxManager
	3.11.17 Test profiles
	3.11.18 WebpageManager
	3.11.19 Retrieving Reports
	3.11.20 TrackingPermissionManager
	Retrieval of TrackingPermissions
	Grant and revoke TrackingPermissions

	3.11.21 Tracking permission log

	A Reports Reference
	A.1 Catalogues
	A.2 Bounce Reports
	A.2.1 Broken down by (top-level) domain
	A.2.2 Development over time
	A.2.3 Bounces and replies by Domain
	A.2.4 Broken down by top 5 domains over time
	A.2.5 Broken down by top-level domains over time

	A.3 Mailing Reports
	A.3.1 Clicks related to weekday and hour
	A.3.2 Clicks related to individual links
	A.3.3 Click development over time
	A.3.4 Most important key data of mailing
	A.3.5 Sendings overview
	A.3.6 Split test analysis
	A.3.7 E-mail clients used

	A.4 Recipient Demographics
	A.4.1 Analysis of recipient data
	A.4.2 Domain distribution
	A.4.3 Top-level domain distribution

	A.5 List Reports
	A.5.1 Most important key data of a list
	A.5.2 Send overview
	A.5.3 Mailings overview
	A.5.4 Analysis of transport frequency
	A.5.5 Evolution over time
	A.5.6 Related to weekday and daytime
	A.5.7 Comparison of mailings in current list
	A.5.8 Target group comparison of current mailing
	A.5.9 E-mail clients used

	A.6 Administrative Reports
	A.6.1 Mail server
	A.6.2 Analysis of sending mail server (SMTP)/(POP3)

	A.7 General Reports
	A.7.1 Overview of the most important key data of all lists
	A.7.2 E-mail volume
	A.7.3 E-mail clients used

	B Support and Copyright

